array(1) { [0]=> object(Apache_Solr_Document)#24 (3) { ["_documentBoost":protected]=> bool(false) ["_fields":protected]=> array(6) { ["content_id"]=> array(1) { [0]=> string(14) "DIRECTORY_1763" } ["content_title"]=> array(1) { [0]=> string(14) "STEFANO GRASSI" } ["description"]=> array(1) { [0]=> string(9519) " a:12:{i:0;a:14:{s:9:"citazione";s:151:"Ferroni, F., Grassi, S., & Leon-Ledesma, M.a. (2019). Selecting structural innovations in DSGE models. JOURNAL OF APPLIED ECONOMETRICS, 34(2), 205-220.";s:4:"data";s:10:"2019-03-01";s:2:"id";s:20:"PUBBLICAZIONE_351137";s:6:"handle";s:11:"2108/215453";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:40:"Settore SECS-S/03 - Statistica Economica";s:9:"metadata4";N;s:9:"metadata5";s:47:"Selecting structural innovations in DSGE models";s:9:"metadata6";s:39:"Ferroni, F; Grassi, S; Leon-Ledesma, Ma";s:9:"metadata7";s:16:"10.1002/jae.2664";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:1;a:14:{s:9:"citazione";s:208:"Basturk, N., Borowska, A., Grassi, S., Hoogerheide, L., & van Dijk, H.k. (2019). Forecast density combinations of dynamic models and data driven portfolio strategies. JOURNAL OF ECONOMETRICS, 210(1), 170-186.";s:4:"data";s:4:"2019";s:2:"id";s:20:"PUBBLICAZIONE_351141";s:6:"handle";s:11:"2108/215447";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:31:"Settore SECS-P/05 - Econometria";s:9:"metadata4";N;s:9:"metadata5";s:84:"Forecast density combinations of dynamic models and data driven portfolio strategies";s:9:"metadata6";s:64:"Basturk, N; Borowska, A; Grassi, S; Hoogerheide, L; van Dijk, Hk";s:9:"metadata7";s:29:"10.1016/j.jeconom.2018.11.011";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:2;a:14:{s:9:"citazione";s:170:"Catania, L., Grassi, S., & Ravazzolo, F. (2019). Forecasting cryptocurrencies under model and parameter instability. INTERNATIONAL JOURNAL OF FORECASTING, 35(2), 485-501.";s:4:"data";s:4:"2019";s:2:"id";s:20:"PUBBLICAZIONE_351135";s:6:"handle";s:11:"2108/215451";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:40:"Settore SECS-S/03 - Statistica Economica";s:9:"metadata4";N;s:9:"metadata5";s:66:"Forecasting cryptocurrencies under model and parameter instability";s:9:"metadata6";s:35:"Catania, L; Grassi, S; Ravazzolo, F";s:9:"metadata7";s:32:"10.1016/j.ijforecast.2018.09.005";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:3;a:14:{s:9:"citazione";s:173:"Marczak, M., Proietti, T., & Grassi, S. (2018). A data-cleaning augmented Kalman filter for robust estimation of state space models. ECONOMETRICS AND STATISTICS, 5, 107-123.";s:4:"data";s:10:"2018-01-01";s:2:"id";s:20:"PUBBLICAZIONE_351142";s:6:"handle";s:11:"2108/215443";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:40:"Settore SECS-S/03 - Statistica Economica";s:9:"metadata4";N;s:9:"metadata5";s:83:"A data-cleaning augmented Kalman filter for robust estimation of state space models";s:9:"metadata6";s:34:"Marczak, M; Proietti, T; Grassi, S";s:9:"metadata7";s:28:"10.1016/j.ecosta.2017.02.002";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:4;a:14:{s:9:"citazione";s:217:"Grassi, S., Mazzi, G., & and Proietti, T. (2018). Automatic Outlier Detection for the Basic Structural Time Series Model. In Handbook on Seasonal Adjustment. European Union and the United Nations Statistical Division.";s:4:"data";s:4:"2018";s:2:"id";s:20:"PUBBLICAZIONE_353129";s:6:"handle";s:11:"2108/216209";s:9:"metadata1";s:19:"Contributo in libro";s:9:"metadata2";N;s:9:"metadata3";s:40:"Settore SECS-S/03 - Statistica Economica";s:9:"metadata4";N;s:9:"metadata5";s:70:"Automatic Outlier Detection for the Basic Structural Time Series Model";s:9:"metadata6";s:36:"Grassi, S; Mazzi, G; and Proietti, T";s:9:"metadata7";s:14:"10.2785/941452";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:5;a:14:{s:9:"citazione";s:210:"Basturk, N., Grassi, S., Hoogerheide, L., Opschoor, A., & van Dijk, H.k. (2017). The R package MitISEM: Efficient and robust simulation procedures for Bayesian inference. JOURNAL OF STATISTICAL SOFTWARE, 79(1).";s:4:"data";s:10:"2017-07-17";s:2:"id";s:20:"PUBBLICAZIONE_351139";s:6:"handle";s:11:"2108/215449";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:40:"Settore SECS-S/03 - Statistica Economica";s:9:"metadata4";N;s:9:"metadata5";s:88:"The R package MitISEM: Efficient and robust simulation procedures for Bayesian inference";s:9:"metadata6";s:64:"Basturk, N; Grassi, S; Hoogerheide, L; Opschoor, A; van Dijk, Hk";s:9:"metadata7";s:21:"10.18637/jss.v079.i01";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:6;a:14:{s:9:"citazione";s:166:"Grassi, S., Nonejad, N., & De Magistris, P.s. (2017). Forecasting With the Standardized Self-Perturbed Kalman Filter. JOURNAL OF APPLIED ECONOMETRICS, 32(2), 318-341.";s:4:"data";s:10:"2017-03-01";s:2:"id";s:20:"PUBBLICAZIONE_351138";s:6:"handle";s:11:"2108/215455";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:40:"Settore SECS-S/03 - Statistica Economica";s:9:"metadata4";N;s:9:"metadata5";s:62:"Forecasting With the Standardized Self-Perturbed Kalman Filter";s:9:"metadata6";s:39:"Grassi, S; Nonejad, N; De Magistris, Ps";s:9:"metadata7";s:16:"10.1002/jae.2522";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:7;a:14:{s:9:"citazione";s:193:"Casarin, R., Grassi, S., Ravazzolo, F., & van Dijk, H.k. (2015). Parallel sequential monte carlo for efficient density combination: The DeCo MATLAB toolbox. JOURNAL OF STATISTICAL SOFTWARE, 68.";s:4:"data";s:10:"2015-11-24";s:2:"id";s:20:"PUBBLICAZIONE_351140";s:6:"handle";s:11:"2108/215435";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:40:"Settore SECS-S/03 - Statistica Economica";s:9:"metadata4";N;s:9:"metadata5";s:90:"Parallel sequential monte carlo for efficient density combination: The DeCo MATLAB toolbox";s:9:"metadata6";s:49:"Casarin, R; Grassi, S; Ravazzolo, F; van Dijk, Hk";s:9:"metadata7";s:21:"10.18637/jss.v068.i03";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:8;a:14:{s:9:"citazione";s:232:"Grassi, S., Proietti, T., Frale, C., Marcellino, M., & Mazzi, G. (2015). EuroMInd-C: a disaggregate monthly indicator of economic activity for the Euro area and member countries. INTERNATIONAL JOURNAL OF FORECASTING, 31(3), 712-738.";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_234551";s:6:"handle";s:11:"2108/115824";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:40:"Settore SECS-S/03 - Statistica Economica";s:9:"metadata4";s:1044:"This paper deals with the estimation of monthly indicators of economic activity for the Euro area and its largest member countries that possess the following attributes: relevance, representativeness and timeliness. Relevance is determined by comparing our monthly indicators to the gross domestic product at chained volumes, as the most important measure of the level of economic activity. Representativeness is achieved by considering a very large number of (timely) time series of monthly indicators relating to the level of economic activity, providing a more or less complete coverage. The indicators are modelled using a large-scale parametric factor model. We discuss its specification and provide details of the statistical treatment. Computational efficiency is crucial for the estimation of large-scale parametric factor models of the dimension used in our application (considering about 170 series). To achieve it, we apply state-of-the-art state space methods that can handle temporal aggregation, and any pattern of missing values.";s:9:"metadata5";s:104:"EuroMInd-C: a disaggregate monthly indicator of economic activity for the Euro area and member countries";s:9:"metadata6";s:59:"Grassi, S; Proietti, T; Frale, C; Marcellino, M; Mazzi, G";s:9:"metadata7";s:32:"10.1016/j.ijforecast.2014.08.015";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:9;a:14:{s:9:"citazione";s:171:"Grassi, S., & Proietti, T. (2014). Characterising economic trends by Bayesian stochastic model specification search. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 71, 359-374.";s:4:"data";s:4:"2014";s:2:"id";s:20:"PUBBLICAZIONE_190077";s:6:"handle";s:10:"2108/91090";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:31:"Settore SECS-P/05 - Econometria";s:9:"metadata4";N;s:9:"metadata5";s:80:"Characterising economic trends by Bayesian stochastic model specification search";s:9:"metadata6";s:22:"Grassi, S; Proietti, T";s:9:"metadata7";s:26:"10.1016/j.csda.2013.02.024";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:10;a:14:{s:9:"citazione";s:58:"Grassi, S. (2010). Topics in unobserved components models.";s:4:"data";s:10:"2010-04-29";s:2:"id";s:19:"PUBBLICAZIONE_29387";s:6:"handle";s:9:"2108/1261";s:9:"metadata1";s:17:"Tesi di dottorato";s:9:"metadata2";N;s:9:"metadata3";s:31:"Settore SECS-P/05 - Econometria";s:9:"metadata4";N;s:9:"metadata5";s:38:"Topics in unobserved components models";s:9:"metadata6";s:15:"Grassi, Stefano";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:11;a:14:{s:9:"citazione";s:132:"Grassi, S., & Proietti, T. (2010). Has the volatility of U.S. inflation changed and how?. JOURNAL OF TIME SERIES ECONOMETRICS, 2(1).";s:4:"data";s:4:"2010";s:2:"id";s:19:"PUBBLICAZIONE_52422";s:6:"handle";s:10:"2108/14403";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:40:"Settore SECS-S/03 - Statistica Economica";s:9:"metadata4";N;s:9:"metadata5";s:53:"Has the volatility of U.S. inflation changed and how?";s:9:"metadata6";s:22:"Grassi, S; Proietti, T";s:9:"metadata7";s:22:"10.2202/1941-1928.1050";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}}" } ["meta_keywords"]=> array(1) { [0]=> string(1) "," } ["reserved"]=> array(1) { [0]=> string(1) "0" } ["auth_ip"]=> array(1) { [0]=> string(1) "0" } } ["_fieldBoosts":protected]=> array(6) { ["content_id"]=> bool(false) ["content_title"]=> bool(false) ["description"]=> bool(false) ["meta_keywords"]=> bool(false) ["reserved"]=> bool(false) ["auth_ip"]=> bool(false) } } }