array(1) { [0]=> object(Apache_Solr_Document)#24 (3) { ["_documentBoost":protected]=> bool(false) ["_fields":protected]=> array(6) { ["content_id"]=> array(1) { [0]=> string(14) "DIRECTORY_3713" } ["content_title"]=> array(1) { [0]=> string(18) "PIERMARCO CANNARSA" } ["description"]=> array(1) { [0]=> string(60634) "Inserire qui il curriculumInsert here the curriculum a:81:{i:0;a:14:{s:9:"citazione";s:204:"Cannarsa, P., Da Prato, G., & Frankowska, H. (2020). Domain invariance for local solutions of semilinear evolution equations in Hilbert spaces. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 102(1), 287-318.";s:4:"data";s:10:"2020-04-07";s:2:"id";s:20:"PUBBLICAZIONE_408201";s:6:"handle";s:11:"2108/263772";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:14:"Settore MAT/05";s:9:"metadata4";N;s:9:"metadata5";s:89:"Domain invariance for local solutions of semilinear evolution equations in Hilbert spaces";s:9:"metadata6";s:39:"Cannarsa, P; Da Prato, G; Frankowska, H";s:9:"metadata7";s:18:"10.1112/jlms.12320";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:1;a:14:{s:9:"citazione";s:214:"Albano, P., Cannarsa, P., & Sinestrari, C. (2020). Generation of singularities from the initial datum for Hamilton-Jacobi equations. JOURNAL OF DIFFERENTIAL EQUATIONS, 268(4), 1412-1426 [10.1016/j.jde.2019.08.051].";s:4:"data";s:4:"2020";s:2:"id";s:20:"PUBBLICAZIONE_360055";s:6:"handle";s:11:"2108/221957";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";s:90:"Generalized characteristics, Hamilton-Jacobi equations, Singularities, Viscosity solutions";s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";s:430:"We study the generation of singularities from the initial datum for a solution of the Cauchy problem for a class of Hamilton-Jacobi equations of evolution. For such equations, we give conditions for the existence of singular generalized characteristics starting at the initial time from a given point of the domain, depending on the properties of the proximal subdifferential of the initial datum in a neighbourhood of that point.";s:9:"metadata5";s:80:"Generation of singularities from the initial datum for Hamilton-Jacobi equations";s:9:"metadata6";s:37:"Albano, P; Cannarsa, P; Sinestrari, C";s:9:"metadata7";s:25:"10.1016/j.jde.2019.08.051";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:2;a:14:{s:9:"citazione";s:212:"Cannarsa, P., Cheng, W., Jin, L., Wang, K., & Yan, J. (2020). Herglotz' variational principle and Lax-Oleinik evolution. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 141, 99-136 [10.1016/j.matpur.2020.07.002].";s:4:"data";s:4:"2020";s:2:"id";s:20:"PUBBLICAZIONE_408212";s:6:"handle";s:11:"2108/263778";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:14:"Settore MAT/05";s:9:"metadata4";N;s:9:"metadata5";s:57:"Herglotz' variational principle and Lax-Oleinik evolution";s:9:"metadata6";s:46:"Cannarsa, P; Cheng, W; Jin, L; Wang, K; Yan, J";s:9:"metadata7";s:28:"10.1016/j.matpur.2020.07.002";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:3;a:14:{s:9:"citazione";s:140:"Cannarsa, P., Martinez, P., & Vancostenoble, J. (2020). The cost of controlling strongly degenerate parabolic equations. ESAIM. COCV, 26, 2.";s:4:"data";s:4:"2020";s:2:"id";s:20:"PUBBLICAZIONE_391411";s:6:"handle";s:11:"2108/248651";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";s:86:"Degenerate parabolic equations; null controllability; moment problem; Bessel functions";s:9:"metadata3";s:14:"Settore MAT/05";s:9:"metadata4";N;s:9:"metadata5";s:63:"The cost of controlling strongly degenerate parabolic equations";s:9:"metadata6";s:42:"Cannarsa, P; Martinez, P; Vancostenoble, J";s:9:"metadata7";s:20:"10.1051/cocv/2018007";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:4;a:14:{s:9:"citazione";s:191:"Basco, V., Cannarsa, P., & Frankowska, H. (2019). Semiconcavity results and sensitivity relations for the sub-Riemannian distance. NONLINEAR ANALYSIS, 184, 298-320 [10.1016/j.na.2019.02.008].";s:4:"data";s:4:"2019";s:2:"id";s:20:"PUBBLICAZIONE_368776";s:6:"handle";s:11:"2108/229226";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:79:"Semiconcavity results and sensitivity relations for the sub-Riemannian distance";s:9:"metadata6";s:36:"Basco, V; Cannarsa, P; Frankowska, H";s:9:"metadata7";s:24:"10.1016/j.na.2019.02.008";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:5;a:14:{s:9:"citazione";s:218:"Cannarsa, P., Chen, Q., & Cheng, W. (2019). Dynamic and asymptotic behavior of singularities of certain weak KAM solutions on the torus. JOURNAL OF DIFFERENTIAL EQUATIONS, 267(4), 2448-2470 [10.1016/j.jde.2019.03.020].";s:4:"data";s:4:"2019";s:2:"id";s:20:"PUBBLICAZIONE_368772";s:6:"handle";s:11:"2108/229222";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:91:"Dynamic and asymptotic behavior of singularities of certain weak KAM solutions on the torus";s:9:"metadata6";s:30:"Cannarsa, P; Chen, Q; Cheng, W";s:9:"metadata7";s:25:"10.1016/j.jde.2019.03.020";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:6;a:14:{s:9:"citazione";s:239:"Cannarsa, P., Cheng, W., Mazzola, M., & Wang, K. (2019). Global generalized characteristics for the Dirichlet problem for Hamilton-Jacobi equations at a supercritical energy level. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 51(5), 4213-4244.";s:4:"data";s:4:"2019";s:2:"id";s:20:"PUBBLICAZIONE_368763";s:6:"handle";s:11:"2108/229217";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:124:"Global generalized characteristics for the Dirichlet problem for Hamilton-Jacobi equations at a supercritical energy level";s:9:"metadata6";s:42:"Cannarsa, P; Cheng, W; Mazzola, M; Wang, K";s:9:"metadata7";s:18:"10.1137/18M1203547";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:7;a:14:{s:9:"citazione";s:175:"Cannarsa, P., Cheng, W., Mendico, C., & Wang, K. (2019). Long-time behavior of first-order mean field games on Euclidean space. DYNAMIC GAMES AND APPLICATIONS, 10(2), 361-390.";s:4:"data";s:4:"2019";s:2:"id";s:20:"PUBBLICAZIONE_408215";s:6:"handle";s:11:"2108/263781";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:14:"Settore MAT/05";s:9:"metadata4";N;s:9:"metadata5";s:69:"Long-time behavior of first-order mean field games on Euclidean space";s:9:"metadata6";s:42:"Cannarsa, P; Cheng, W; Mendico, C; Wang, K";s:9:"metadata7";s:26:"10.1007/s13235-019-00321-3";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:8;a:14:{s:9:"citazione";s:222:"Cannarsa, P., Ferretti, R., & Martinez, P. (2019). Null controllability for parabolic operators with interior degeneracy and one-sided control. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 57(2), 900-924 [10.1137/18M1198442].";s:4:"data";s:4:"2019";s:2:"id";s:20:"PUBBLICAZIONE_368774";s:6:"handle";s:11:"2108/229224";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:91:"Null controllability for parabolic operators with interior degeneracy and one-sided control";s:9:"metadata6";s:37:"Cannarsa, P; Ferretti, R; Martinez, P";s:9:"metadata7";s:18:"10.1137/18M1198442";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:9;a:14:{s:9:"citazione";s:209:"Cannarsa, P., Floridia, G., Golgeleyen, F., & Yamamoto, M. (2019). Inverse coefficient problems for a transport equation by local Carleman estimate. INVERSE PROBLEMS, 35(10), 105013 [10.1088/1361-6420/ab1c69].";s:4:"data";s:4:"2019";s:2:"id";s:20:"PUBBLICAZIONE_368770";s:6:"handle";s:11:"2108/229220";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:80:"Inverse coefficient problems for a transport equation by local Carleman estimate";s:9:"metadata6";s:52:"Cannarsa, P; Floridia, G; Golgeleyen, F; Yamamoto, M";s:9:"metadata7";s:24:"10.1088/1361-6420/ab1c69";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:10;a:14:{s:9:"citazione";s:162:"Albano, P., Cannarsa, P., & Scarinci, T. (2018). Partial regularity for solutions to subelliptic eikonal equations. COMPTES RENDUS MATHÉMATIQUE, 356(2), 172-176.";s:4:"data";s:4:"2018";s:2:"id";s:20:"PUBBLICAZIONE_342057";s:6:"handle";s:11:"2108/207375";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:65:"Partial regularity for solutions to subelliptic eikonal equations";s:9:"metadata6";s:35:"Albano, P; Cannarsa, P; Scarinci, T";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:11;a:14:{s:9:"citazione";s:210:"Albano, P., Cannarsa, P., & Scarinci, T. (2018). Regularity results for the minimum time function with Hörmander vector fields. JOURNAL OF DIFFERENTIAL EQUATIONS, 264(5), 3312-3335 [10.1016/j.jde.2017.11.016].";s:4:"data";s:4:"2018";s:2:"id";s:20:"PUBBLICAZIONE_342059";s:6:"handle";s:11:"2108/207377";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:78:"Regularity results for the minimum time function with Hörmander vector fields";s:9:"metadata6";s:35:"Albano, P; Cannarsa, P; Scarinci, T";s:9:"metadata7";s:25:"10.1016/j.jde.2017.11.016";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:12;a:14:{s:9:"citazione";s:221:"Basco, V., Cannarsa, P., & Frankowska, H. (2018). Necessary conditions for infinite horizon optimal control problems with state constraints. MATHEMATICAL CONTROL AND RELATED FIELDS, 8(3-4), 535-555 [10.3934/mcrf.2018022].";s:4:"data";s:4:"2018";s:2:"id";s:20:"PUBBLICAZIONE_368748";s:6:"handle";s:11:"2108/229200";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";s:109:"Infinite horizon optimal control; state constraints; value function; maximum principle; sensitivity relations";s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:89:"Necessary conditions for infinite horizon optimal control problems with state constraints";s:9:"metadata6";s:36:"Basco, V; Cannarsa, P; Frankowska, H";s:9:"metadata7";s:20:"10.3934/mcrf.2018022";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:13;a:14:{s:9:"citazione";s:204:"Cannarsa, P., & Capuani, R. (2018). Existence and Uniqueness for Mean Field Games with State Constraints. In PDE models for multi-agent phenomena (pp. 49-71). Springer, Cham [10.1007/978-3-030-01947-1_3].";s:4:"data";s:4:"2018";s:2:"id";s:20:"PUBBLICAZIONE_368753";s:6:"handle";s:11:"2108/229208";s:9:"metadata1";s:19:"Contributo in libro";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:68:"Existence and Uniqueness for Mean Field Games with State Constraints";s:9:"metadata6";s:23:"Cannarsa, P; Capuani, R";s:9:"metadata7";s:27:"10.1007/978-3-030-01947-1_3";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:14;a:14:{s:9:"citazione";s:232:"Cannarsa, P., & Frankowska, H. (2018). Value function, relaxation, and transversality conditions in infinite horizon optimal control. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 457(2), 1188-1217 [10.1016/j.jmaa.2017.02.009].";s:4:"data";s:4:"2018";s:2:"id";s:20:"PUBBLICAZIONE_323554";s:6:"handle";s:11:"2108/191796";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:93:"Value function, relaxation, and transversality conditions in infinite horizon optimal control";s:9:"metadata6";s:26:"Cannarsa, P; Frankowska, H";s:9:"metadata7";s:26:"10.1016/j.jmaa.2017.02.009";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:15;a:14:{s:9:"citazione";s:262:"Cannarsa, P., & Khapalov, A. (2018). Micromotions and controllability of a swimming model in an incompressible fluid governed by 2D or 3D Navier--Stokes equations. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 465(1), 100-124 [10.1016/j.jmaa.2018.04.066].";s:4:"data";s:4:"2018";s:2:"id";s:20:"PUBBLICAZIONE_342055";s:6:"handle";s:11:"2108/207373";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:127:"Micromotions and controllability of a swimming model in an incompressible fluid governed by 2D or 3D Navier--Stokes equations";s:9:"metadata6";s:24:"Cannarsa, P; Khapalov, A";s:9:"metadata7";s:26:"10.1016/j.jmaa.2018.04.066";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:16;a:14:{s:9:"citazione";s:230:"Cannarsa, P., Capuani, R., & Cardaliaguet, P. (2018). C1;1-smoothness of constrained solutions in the calculus of variations withapplication to mean field games. MATHEMATICS IN ENGINEERING, 1(1), 174-203 [10.3934/Mine.2018.1.174].";s:4:"data";s:4:"2018";s:2:"id";s:20:"PUBBLICAZIONE_408219";s:6:"handle";s:11:"2108/263784";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:14:"Settore MAT/05";s:9:"metadata4";N;s:9:"metadata5";s:106:"C1;1-smoothness of constrained solutions in the calculus of variations withapplication to mean field games";s:9:"metadata6";s:40:"Cannarsa, P; Capuani, R; Cardaliaguet, P";s:9:"metadata7";s:23:"10.3934/Mine.2018.1.174";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:17;a:14:{s:9:"citazione";s:210:"Cannarsa, P., Da Prato, G., & Frankowska, H. (2018). Invariance for quasi-dissipative systems in Banach spaces. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 457(2), 1173-1187 [10.1016/j.jmaa.2016.11.087].";s:4:"data";s:4:"2018";s:2:"id";s:20:"PUBBLICAZIONE_323552";s:6:"handle";s:11:"2108/191794";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:57:"Invariance for quasi-dissipative systems in Banach spaces";s:9:"metadata6";s:39:"Cannarsa, P; Da Prato, G; Frankowska, H";s:9:"metadata7";s:26:"10.1016/j.jmaa.2016.11.087";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:18;a:14:{s:9:"citazione";s:197:"Alabau-Boussouira, F., Cannarsa, P., & Leugering, G. (2017). Control and stabilization of degenerate wave equations. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 55(3), 2052-2087 [10.1137/15M1020538].";s:4:"data";s:4:"2017";s:2:"id";s:20:"PUBBLICAZIONE_323546";s:6:"handle";s:11:"2108/191788";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";s:75:"Degenerate wave equations; controllability; stabilization; boundary control";s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:54:"Control and stabilization of degenerate wave equations";s:9:"metadata6";s:47:"Alabau-Boussouira, F; Cannarsa, P; Leugering, G";s:9:"metadata7";s:18:"10.1137/15M1020538";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:19;a:14:{s:9:"citazione";s:190:"Beauchard, K., & Cannarsa, P. (2017). Heat equation on the Heisenberg group: Observability and applications. JOURNAL OF DIFFERENTIAL EQUATIONS, 262(8), 4475-4521 [10.1016/j.jde.2016.12.021].";s:4:"data";s:4:"2017";s:2:"id";s:20:"PUBBLICAZIONE_312536";s:6:"handle";s:11:"2108/181776";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:69:"Heat equation on the Heisenberg group: Observability and applications";s:9:"metadata6";s:25:"Beauchard, K; Cannarsa, P";s:9:"metadata7";s:25:"10.1016/j.jde.2016.12.021";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:20;a:14:{s:9:"citazione";s:199:"Cannarsa, P., & Cheng, W. (2017). Generalized characteristics and Lax–Oleinik operators: global theory. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 56(5) [10.1007/s00526-017-1219-4].";s:4:"data";s:4:"2017";s:2:"id";s:20:"PUBBLICAZIONE_323550";s:6:"handle";s:11:"2108/191792";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:70:"Generalized characteristics and Lax–Oleinik operators: global theory";s:9:"metadata6";s:21:"Cannarsa, P; Cheng, W";s:9:"metadata7";s:25:"10.1007/s00526-017-1219-4";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:21;a:14:{s:9:"citazione";s:299:"Cannarsa, P., Cheng, W., & Fathi, A. (2017). On the topology of the set of singularities of a solution to the Hamilton–Jacobi equation|Sur la topologie des singularités d'une solution de l'équation de Hamilton–Jacobi. COMPTES RENDUS MATHÉMATIQUE, 355(2), 176-180 [10.1016/j.crma.2016.12.004].";s:4:"data";s:4:"2017";s:2:"id";s:20:"PUBBLICAZIONE_312538";s:6:"handle";s:11:"2108/181782";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:177:"On the topology of the set of singularities of a solution to the Hamilton–Jacobi equation|Sur la topologie des singularités d'une solution de l'équation de Hamilton–Jacobi";s:9:"metadata6";s:31:"Cannarsa, P; Cheng, W; Fathi, A";s:9:"metadata7";s:26:"10.1016/j.crma.2016.12.004";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:22;a:14:{s:9:"citazione";s:261:"Cannarsa, P., Floridia, G., & Khapalov, A.y. (2017). Multiplicative controllability for semilinear reaction–diffusion equations with finitely many changes of sign. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 108(4), 425-458 [10.1016/j.matpur.2017.07.002].";s:4:"data";s:4:"2017";s:2:"id";s:20:"PUBBLICAZIONE_323548";s:6:"handle";s:11:"2108/191790";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:111:"Multiplicative controllability for semilinear reaction–diffusion equations with finitely many changes of sign";s:9:"metadata6";s:38:"Cannarsa, P; Floridia, G; Khapalov, Ay";s:9:"metadata7";s:28:"10.1016/j.matpur.2017.07.002";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:23;a:14:{s:9:"citazione";s:218:"Cannarsa, P., Martinez, P., & Vancostenoble, J. (2017). The cost of controlling weakly degenerate parabolic equations by boundary controls. MATHEMATICAL CONTROL AND RELATED FIELDS, 7(2), 171-211 [10.3934/mcrf.2017006].";s:4:"data";s:4:"2017";s:2:"id";s:20:"PUBBLICAZIONE_312545";s:6:"handle";s:11:"2108/181792";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:82:"The cost of controlling weakly degenerate parabolic equations by boundary controls";s:9:"metadata6";s:42:"Cannarsa, P; Martinez, P; Vancostenoble, J";s:9:"metadata7";s:20:"10.3934/mcrf.2017006";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:24;a:14:{s:9:"citazione";s:206:"Ancona, F., Cannarsa, P., & Nguyen, K.T. (2016). Quantitative Compactness Estimates for Hamilton–Jacobi Equations. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 219(2), 793-828 [10.1007/s00205-015-0907-5].";s:4:"data";s:4:"2016";s:2:"id";s:20:"PUBBLICAZIONE_299150";s:6:"handle";s:11:"2108/170475";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:66:"Quantitative Compactness Estimates for Hamilton–Jacobi Equations";s:9:"metadata6";s:34:"Ancona, F; Cannarsa, P; Nguyen, KT";s:9:"metadata7";s:25:"10.1007/s00205-015-0907-5";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:25;a:14:{s:9:"citazione";s:174:"Cannarsa, P., & Da Prato, G. (2016). Positivity of solutions in a perturbed age-structured model. MATHEMATICAL POPULATION STUDIES, 23(1), 3-16 [10.1080/08898480.2014.925340].";s:4:"data";s:4:"2016";s:2:"id";s:20:"PUBBLICAZIONE_299152";s:6:"handle";s:11:"2108/170477";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";s:77:"Dynamics of populations; invariance; stochastic partial differential equation";s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:59:"Positivity of solutions in a perturbed age-structured model";s:9:"metadata6";s:24:"Cannarsa, P; Da Prato, G";s:9:"metadata7";s:28:"10.1080/08898480.2014.925340";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:26;a:14:{s:9:"citazione";s:219:"Cannarsa, P., Martinez, P., & Vancostenoble, J. (2016). Global carleman estimates for degenerate parabolic operators with applications. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 239(1133), 1-225 [10.1090/memo/1133].";s:4:"data";s:4:"2016";s:2:"id";s:20:"PUBBLICAZIONE_299148";s:6:"handle";s:11:"2108/170473";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:78:"Global carleman estimates for degenerate parabolic operators with applications";s:9:"metadata6";s:42:"Cannarsa, P; Martinez, P; Vancostenoble, J";s:9:"metadata7";s:17:"10.1090/memo/1133";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:27;a:14:{s:9:"citazione";s:217:"CANNARSA, P., Mazzola, M., & SINESTRARI, C. (2015). Global Propagation of Singularities for Time Dependent Hamilton-Jacobi Equations. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 38, 441-469 [10.3934/dcds.2015.35.4225].";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_232190";s:6:"handle";s:11:"2108/113950";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";s:598:"We investigate the properties of the set of singularities of semiconcave solutions of Hamilton-Jacobi equations. It is well known that the singularities of such solutions propagate locally along generalized characteristics. Special generalized characteristics, satisfying an energy condition, can be constructed, under some assumptions on the structure of the Hamiltonian H. In this paper, we provide estimates of the dissipative behavior of the energy along such curves. As an application, we prove that the singularities of any viscosity solution of such equations cannot vanish in a finite time.";s:9:"metadata5";s:80:"Global Propagation of Singularities for Time Dependent Hamilton-Jacobi Equations";s:9:"metadata6";s:38:"CANNARSA, P; Mazzola, M; SINESTRARI, C";s:9:"metadata7";s:25:"10.3934/dcds.2015.35.4225";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:28;a:14:{s:9:"citazione";s:155:"Cannarsa, P., & Cheng, W. (2015). Homoclinic orbits and critical points of barrier functions. NONLINEARITY, 28(6), 1823-1840 [10.1088/0951-7715/28/6/1823].";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_234221";s:6:"handle";s:11:"2108/116565";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";s:7:"Inglese";s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:58:"Homoclinic orbits and critical points of barrier functions";s:9:"metadata6";s:21:"Cannarsa, P; Cheng, W";s:9:"metadata7";s:27:"10.1088/0951-7715/28/6/1823";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:29;a:14:{s:9:"citazione";s:102:"Cannarsa, P., & D'Aprile, T. (2015). Introduction to measure theory and functional analysis. Springer.";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_315498";s:6:"handle";s:11:"2108/184433";s:9:"metadata1";s:10:"Monografia";s:9:"metadata2";s:17:"Mathematics (all)";s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";s:482:"This book introduces readers to theories that play a crucial role in modern mathematics, such as integration and functional analysis, employing a unifying approach that views these two subjects as being deeply intertwined. This feature is particularly evident in the broad range of problems examined, the solutions of which are often supported by generous hints. If the material is split into two courses, it can be supplemented by additional topics from the third part of the book,";s:9:"metadata5";s:54:"Introduction to measure theory and functional analysis";s:9:"metadata6";s:24:"Cannarsa, P; D'Aprile, T";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:30;a:14:{s:9:"citazione";s:201:"Cannarsa, P., & Quincampoix, M. (2015). Vanishing discount limit and nonexpansive optimal control and differential games. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 53(4), 1789-1814 [10.1137/130945429].";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_254123";s:6:"handle";s:11:"2108/133786";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:80:"Vanishing discount limit and nonexpansive optimal control and differential games";s:9:"metadata6";s:27:"Cannarsa, P; Quincampoix, M";s:9:"metadata7";s:17:"10.1137/130945429";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:31;a:14:{s:9:"citazione";s:343:"Cannarsa, P., & Scarinci, T. (2015). Conjugate times and regularity of the minimum time function with differential inclusions. In P. Bettiol, P. Cannarsa, G. Colombo, M. Motta, & F. Rampazzo (a cura di), Analysis and geometry in control theory and its applications (pp. 85-110). Springer International Publishing [10.1007/978-3-319-06917-3_4].";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_299154";s:6:"handle";s:11:"2108/170479";s:9:"metadata1";s:19:"Contributo in libro";s:9:"metadata2";s:69:"Minimum time function; sensitivity relations; differential inclusions";s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:88:"Conjugate times and regularity of the minimum time function with differential inclusions";s:9:"metadata6";s:24:"Cannarsa, P; Scarinci, T";s:9:"metadata7";s:27:"10.1007/978-3-319-06917-3_4";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:32;a:14:{s:9:"citazione";s:252:"Cannarsa, P., Da Prato, G., Metafune, G., & Pallara, D. (2015). Maximal regularity for gradient systems with boundary degeneracy. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 26(2), 135-149 [10.4171/RLM/698].";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_254121";s:6:"handle";s:11:"2108/133784";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";s:112:"degenerate elliptic operators; diffusion processes; semigroups of operators; gradient systems; invariant measure";s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:64:"Maximal regularity for gradient systems with boundary degeneracy";s:9:"metadata6";s:49:"Cannarsa, P; Da Prato, G; Metafune, G; Pallara, D";s:9:"metadata7";s:15:"10.4171/RLM/698";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:33;a:14:{s:9:"citazione";s:244:"Cannarsa, P., Frankowska, H., & Scarinci, T. (2015). Second-order sensitivity relations and regularity of the value function for Mayer's problem in optimal control. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 53(6), 3642-3672 [10.1137/14098346X].";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_299146";s:6:"handle";s:11:"2108/170471";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:110:"Second-order sensitivity relations and regularity of the value function for Mayer's problem in optimal control";s:9:"metadata6";s:39:"Cannarsa, P; Frankowska, H; Scarinci, T";s:9:"metadata7";s:17:"10.1137/14098346X";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:34;a:14:{s:9:"citazione";s:178:"Cannarsa, P., Frankowska, H., & Scarinci, T. (2015). Sensitivity relations for the Mayer problem with differential inclusions. ESAIM. COCV, 21(3), 789-814 [10.1051/cocv/2014050].";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_299143";s:6:"handle";s:11:"2108/170469";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:72:"Sensitivity relations for the Mayer problem with differential inclusions";s:9:"metadata6";s:39:"Cannarsa, P; Frankowska, H; Scarinci, T";s:9:"metadata7";s:20:"10.1051/cocv/2014050";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:35;a:14:{s:9:"citazione";s:257:"Cannarsa, P., Marigonda, A., & Nguyen, K.T. (2015). Optimality conditions and regularity results for time optimal control problems with differential inclusions. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 427(1), 202-228 [10.1016/j.jmaa.2015.02.027].";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_299141";s:6:"handle";s:11:"2108/170467";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:107:"Optimality conditions and regularity results for time optimal control problems with differential inclusions";s:9:"metadata6";s:37:"Cannarsa, P; Marigonda, A; Nguyen, KT";s:9:"metadata7";s:26:"10.1016/j.jmaa.2015.02.027";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:36;a:14:{s:9:"citazione";s:197:"Beauchard, K., Cannarsa, P., & Guglielmi, R. (2014). Null controllability of Grushin-type operators in dimension two. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 16(1), 67-101 [10.4171/JEMS/428].";s:4:"data";s:4:"2014";s:2:"id";s:20:"PUBBLICAZIONE_183329";s:6:"handle";s:10:"2108/90028";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:63:"Null controllability of Grushin-type operators in dimension two";s:9:"metadata6";s:39:"Beauchard, K; Cannarsa, P; Guglielmi, R";s:9:"metadata7";s:16:"10.4171/JEMS/428";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:37;a:14:{s:9:"citazione";s:222:"Beauchard, K., Cannarsa, P., & Yamamoto, M. (2014). Inverse source problem and null controllability for multidimensional parabolic operators of Grushin type. INVERSE PROBLEMS, 30(2), 025006 [10.1088/0266-5611/30/2/025006].";s:4:"data";s:4:"2014";s:2:"id";s:20:"PUBBLICAZIONE_183326";s:6:"handle";s:10:"2108/90292";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:104:"Inverse source problem and null controllability for multidimensional parabolic operators of Grushin type";s:9:"metadata6";s:38:"Beauchard, K; Cannarsa, P; Yamamoto, M";s:9:"metadata7";s:29:"10.1088/0266-5611/30/2/025006";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:38;a:14:{s:9:"citazione";s:204:"Cannarsa, P., & Frankowska, H. (2014). From pointwise to local regularity for solutions of Hamilton-Jacobi-Bellman equations. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 49(3-4), 1061-1074.";s:4:"data";s:4:"2014";s:2:"id";s:20:"PUBBLICAZIONE_234219";s:6:"handle";s:11:"2108/115489";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:85:"From pointwise to local regularity for solutions of Hamilton-Jacobi-Bellman equations";s:9:"metadata6";s:26:"Cannarsa, P; Frankowska, H";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:39;a:14:{s:9:"citazione";s:201:"Cannarsa, P., Cheng, W., & Zhang, Q. (2014). Propagation of Singularities for Weak KAM Solutions and Barrier Functions. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 331(1), 1-20 [10.1007/s00220-014-2106-x].";s:4:"data";s:4:"2014";s:2:"id";s:20:"PUBBLICAZIONE_241554";s:6:"handle";s:11:"2108/122516";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";s:75:"Hamilton-Jacobi equations, weak KAM theory, singularities, barrier function";s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:73:"Propagation of Singularities for Weak KAM Solutions and Barrier Functions";s:9:"metadata6";s:31:"Cannarsa, P; Cheng, W; Zhang, Q";s:9:"metadata7";s:25:"10.1007/s00220-014-2106-x";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:40;a:14:{s:9:"citazione";s:192:"Alabau-Boussouira, F., & Cannarsa, P. (2013). A CONSTRUCTIVE PROOF OF GIBSON'S STABILITY THEOREM. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 6(3), 611-617 [10.3934/dcdss.2013.6.611].";s:4:"data";s:4:"2013";s:2:"id";s:20:"PUBBLICAZIONE_183614";s:6:"handle";s:10:"2108/90202";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:50:"A CONSTRUCTIVE PROOF OF GIBSON'S STABILITY THEOREM";s:9:"metadata6";s:33:"Alabau-Boussouira, F; Cannarsa, P";s:9:"metadata7";s:24:"10.3934/dcdss.2013.6.611";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:41;a:14:{s:9:"citazione";s:202:"Albano, P., Cannarsa, P., Nguyen, K., & Sinestrari, C. (2013). Singular gradient flow of the distance function and homotopy equivalence. MATHEMATISCHE ANNALEN, 356(1), 23-43 [10.1007/s00208-012-0835-8].";s:4:"data";s:4:"2013";s:2:"id";s:20:"PUBBLICAZIONE_183625";s:6:"handle";s:10:"2108/89937";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:72:"Singular gradient flow of the distance function and homotopy equivalence";s:9:"metadata6";s:48:"Albano, P; Cannarsa, P; Nguyen, K; Sinestrari, C";s:9:"metadata7";s:25:"10.1007/s00208-012-0835-8";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:42;a:14:{s:9:"citazione";s:226:"Cannarsa, P., & Frankowska, H. (2013). From pointwise to local regularity for solutions of Hamilton–Jacobi equations. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 49(3-4), 1061-1074 [10.1007/s00526-013-0611-y].";s:4:"data";s:4:"2013";s:2:"id";s:20:"PUBBLICAZIONE_183325";s:6:"handle";s:10:"2108/90059";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:79:"From pointwise to local regularity for solutions of Hamilton–Jacobi equations";s:9:"metadata6";s:26:"Cannarsa, P; Frankowska, H";s:9:"metadata7";s:25:"10.1007/s00526-013-0611-y";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:43;a:14:{s:9:"citazione";s:140:"Cannarsa, P., & Frankowska, H. (2013). Local regularity of the value function in optimal control. SYSTEMS & CONTROL LETTERS, 62(9), 791-794.";s:4:"data";s:4:"2013";s:2:"id";s:20:"PUBBLICAZIONE_183561";s:6:"handle";s:10:"2108/90209";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:57:"Local regularity of the value function in optimal control";s:9:"metadata6";s:26:"Cannarsa, P; Frankowska, H";s:9:"metadata7";s:30:"10.1016/j.sysconle.2013.06.001";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:44;a:14:{s:9:"citazione";s:153:"Cannarsa, P., Frankowska, H., & Marchini, E. (2013). Optimal control for evolution equations with memory. JOURNAL OF EVOLUTION EQUATIONS, 13(1), 197-227.";s:4:"data";s:4:"2013";s:2:"id";s:20:"PUBBLICAZIONE_183631";s:6:"handle";s:10:"2108/90032";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:51:"Optimal control for evolution equations with memory";s:9:"metadata6";s:39:"Cannarsa, P; Frankowska, H; Marchini, E";s:9:"metadata7";s:25:"10.1007/s00028-013-0175-5";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:45;a:14:{s:9:"citazione";s:134:"Cannarsa, P., Marino, F., & Wolenski, P. (2013). The dual arc inclusion with differential inclusions. NONLINEAR ANALYSIS, 79, 176-189.";s:4:"data";s:4:"2013";s:2:"id";s:20:"PUBBLICAZIONE_183668";s:6:"handle";s:10:"2108/89925";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:51:"The dual arc inclusion with differential inclusions";s:9:"metadata6";s:35:"Cannarsa, P; Marino, F; Wolenski, P";s:9:"metadata7";s:24:"10.1016/j.na.2012.11.021";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:46;a:14:{s:9:"citazione";s:188:"Cannarsa, P., & Cardaliaguet, P. (2012). Regularity results for eikonal-type equations with nonsmooth coefficients. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 19(6), 751-769.";s:4:"data";s:4:"2012";s:2:"id";s:20:"PUBBLICAZIONE_183703";s:6:"handle";s:10:"2108/90428";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:73:"Regularity results for eikonal-type equations with nonsmooth coefficients";s:9:"metadata6";s:28:"Cannarsa, P; Cardaliaguet, P";s:9:"metadata7";s:25:"10.1007/s00030-011-0150-1";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:47;a:14:{s:9:"citazione";s:145:"Cannarsa, P., & Da Prato, G. (2012). Invariance for stochastic reaction-diffusion equations. EVOLUTION EQUATIONS AND CONTROL THEORY, 1(1), 43-56.";s:4:"data";s:4:"2012";s:2:"id";s:20:"PUBBLICAZIONE_183679";s:6:"handle";s:10:"2108/90168";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:54:"Invariance for stochastic reaction-diffusion equations";s:9:"metadata6";s:24:"Cannarsa, P; Da Prato, G";s:9:"metadata7";s:22:"10.3934/eect.2012.1.43";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:48;a:14:{s:9:"citazione";s:231:"Cannarsa, P., Marino, F., & Wolenski, P. (2012). Semiconcavity of the minimum time function for differential inclusions. DYNAMICS OF CONTINUOUS, DISCRETE AND IMPULSIVE SYSTEMS. SERIES B: APPLICATIONS & ALGORITHMS, 19(1-2), 187-206.";s:4:"data";s:4:"2012";s:2:"id";s:20:"PUBBLICAZIONE_188817";s:6:"handle";s:10:"2108/90427";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:70:"Semiconcavity of the minimum time function for differential inclusions";s:9:"metadata6";s:35:"Cannarsa, P; Marino, F; Wolenski, P";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:49;a:14:{s:9:"citazione";s:205:"Cannarsa, P., Tort, J., & Yamamoto, M. (2012). Unique continuation and approximate controllability for a degenerate parabolic equation. APPLICABLE ANALYSIS, 91(8), 1409-1425 [10.1080/00036811.2011.639766].";s:4:"data";s:4:"2012";s:2:"id";s:20:"PUBBLICAZIONE_216023";s:6:"handle";s:11:"2108/102754";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:87:"Unique continuation and approximate controllability for a degenerate parabolic equation";s:9:"metadata6";s:33:"Cannarsa, P; Tort, J; Yamamoto, M";s:9:"metadata7";s:28:"10.1080/00036811.2011.639766";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:50;a:14:{s:9:"citazione";s:198:"Cannarsa, P., & Wolenski PR (2011). Semiconcavity of the value function for a class of differential inclusions. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 29(2), 453-466 [10.3934/dcds.2011.29.453].";s:4:"data";s:4:"2011";s:2:"id";s:20:"PUBBLICAZIONE_216015";s:6:"handle";s:11:"2108/102722";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:74:"Semiconcavity of the value function for a class of differential inclusions";s:9:"metadata6";s:24:"Cannarsa, P; Wolenski PR";s:9:"metadata7";s:24:"10.3934/dcds.2011.29.453";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:51;a:14:{s:9:"citazione";s:216:"Cannarsa, P., & Da Prato, G. (2011). Stochastic viability for regular closed sets in Hilbert spaces. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 337-346 [10.4171/RLM/603].";s:4:"data";s:4:"2011";s:2:"id";s:20:"PUBBLICAZIONE_216028";s:6:"handle";s:11:"2108/102748";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:62:"Stochastic viability for regular closed sets in Hilbert spaces";s:9:"metadata6";s:24:"Cannarsa, P; Da Prato, G";s:9:"metadata7";s:15:"10.4171/RLM/603";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:52;a:14:{s:9:"citazione";s:194:"Cannarsa, P., & Nguyen, K. (2011). Exterior Sphere Condition and Time Optimal Control for Differential Inclusions. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 49(6), 2558-2576 [10.1137/110825078].";s:4:"data";s:4:"2011";s:2:"id";s:20:"PUBBLICAZIONE_216029";s:6:"handle";s:11:"2108/102728";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:78:"Exterior Sphere Condition and Time Optimal Control for Differential Inclusions";s:9:"metadata6";s:22:"Cannarsa, P; Nguyen, K";s:9:"metadata7";s:17:"10.1137/110825078";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:53;a:14:{s:9:"citazione";s:199:"Cannarsa, P., & Sforza, D. (2011). Integro-differential equations of hyperbolic type with positive definite kernels. JOURNAL OF DIFFERENTIAL EQUATIONS, 250(12), 4289-4335 [10.1016/j.jde.2011.03.005].";s:4:"data";s:4:"2011";s:2:"id";s:20:"PUBBLICAZIONE_216019";s:6:"handle";s:11:"2108/102795";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:80:"Integro-differential equations of hyperbolic type with positive definite kernels";s:9:"metadata6";s:22:"Cannarsa, P; Sforza, D";s:9:"metadata7";s:25:"10.1016/j.jde.2011.03.005";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:54;a:14:{s:9:"citazione";s:224:"Guglielmi, R., Cannarsa, P., & Alabau-Boussouira, F. (2011). Indirect stabilization of weakly coupled systems with hybrid boundary conditions. MATHEMATICAL CONTROL AND RELATED FIELDS, 1(4), 413-436 [10.3934/mcrf.2011.1.413].";s:4:"data";s:4:"2011";s:2:"id";s:20:"PUBBLICAZIONE_216021";s:6:"handle";s:11:"2108/102757";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:80:"Indirect stabilization of weakly coupled systems with hybrid boundary conditions";s:9:"metadata6";s:47:"Guglielmi, R; Cannarsa, P; Alabau-Boussouira, F";s:9:"metadata7";s:23:"10.3934/mcrf.2011.1.413";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:55;a:14:{s:9:"citazione";s:210:"Cannarsa, P., & Cardaliaguet, P. (2010). Hölder estimates in space-time for viscosity solutions of Hamilton-Jacobi equations. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 63(5), 590-629 [10.1002/cpa.20315].";s:4:"data";s:4:"2010";s:2:"id";s:19:"PUBBLICAZIONE_52996";s:6:"handle";s:10:"2108/14411";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:84:"Hölder estimates in space-time for viscosity solutions of Hamilton-Jacobi equations";s:9:"metadata6";s:28:"Cannarsa, P; Cardaliaguet, P";s:9:"metadata7";s:17:"10.1002/cpa.20315";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:56;a:14:{s:9:"citazione";s:142:"Cannarsa, P., & Czarnecki, M. (2010). Minkowski content for reachable sets. MANUSCRIPTA MATHEMATICA, 131, 507-530 [10.1007/s00229-010-0334-8].";s:4:"data";s:4:"2010";s:2:"id";s:19:"PUBBLICAZIONE_52997";s:6:"handle";s:10:"2108/14412";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:36:"Minkowski content for reachable sets";s:9:"metadata6";s:25:"Cannarsa, P; Czarnecki, M";s:9:"metadata7";s:25:"10.1007/s00229-010-0334-8";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:57;a:14:{s:9:"citazione";s:262:"Cannarsa, P., & Khapalov, A. (2010). Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES B., 14(4), 1293-1311 [10.3934/dcdsb.2010.14.1293].";s:4:"data";s:4:"2010";s:2:"id";s:19:"PUBBLICAZIONE_52994";s:6:"handle";s:10:"2108/14408";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:123:"Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign";s:9:"metadata6";s:24:"Cannarsa, P; Khapalov, A";s:9:"metadata7";s:26:"10.3934/dcdsb.2010.14.1293";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:58;a:14:{s:9:"citazione";s:198:"Cannarsa, P., Da Prato, G., & Frankowska, H. (2010). Invariant measures associated to degenerate elliptic operators. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 59(1), 53-78 [10.1512/iumj.2010.59.3886].";s:4:"data";s:4:"2010";s:2:"id";s:19:"PUBBLICAZIONE_52995";s:6:"handle";s:10:"2108/14410";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:62:"Invariant measures associated to degenerate elliptic operators";s:9:"metadata6";s:39:"Cannarsa, P; Da Prato, G; Frankowska, H";s:9:"metadata7";s:25:"10.1512/iumj.2010.59.3886";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:59;a:14:{s:9:"citazione";s:196:"Cannarsa, P., Quincampoix, M., & Buckdahn, R. (2010). Regularity properties of a class of fully nonlinear parabolic equations. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 17, 715-728.";s:4:"data";s:4:"2010";s:2:"id";s:19:"PUBBLICAZIONE_52992";s:6:"handle";s:10:"2108/10949";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:71:"Regularity properties of a class of fully nonlinear parabolic equations";s:9:"metadata6";s:40:"Cannarsa, P; Quincampoix, M; Buckdahn, R";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:60;a:14:{s:9:"citazione";s:171:"Cannarsa, P., Tort, J., & Yamamoto, M. (2010). Determination of source terms in a degenerate parabolic equation. INVERSE PROBLEMS, 26(10) [10.1088/0266-5611/26/10/105003].";s:4:"data";s:4:"2010";s:2:"id";s:19:"PUBBLICAZIONE_52993";s:6:"handle";s:10:"2108/14409";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:64:"Determination of source terms in a degenerate parabolic equation";s:9:"metadata6";s:33:"Cannarsa, P; Tort, J; Yamamoto, M";s:9:"metadata7";s:30:"10.1088/0266-5611/26/10/105003";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:61;a:14:{s:9:"citazione";s:187:"ALABAU-BOUSSOUIRA, F., & CANNARSA, P. (2009). A general method for proving sharp energy decay rates for memory-dissipative evolution equations. COMPTES RENDUS MATHÉMATIQUE, 347, 867-872.";s:4:"data";s:4:"2009";s:2:"id";s:20:"PUBBLICAZIONE_216317";s:6:"handle";s:11:"2108/102811";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:96:"A general method for proving sharp energy decay rates for memory-dissipative evolution equations";s:9:"metadata6";s:33:"ALABAU-BOUSSOUIRA, F; CANNARSA, P";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:62;a:14:{s:9:"citazione";s:150:"CANNARSA, P., & DE TERESA, L. (2009). Controllability of 1-D coupled degenerate parabolic equations. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 73.";s:4:"data";s:4:"2009";s:2:"id";s:20:"PUBBLICAZIONE_216320";s:6:"handle";s:11:"2108/102809";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:61:"Controllability of 1-D coupled degenerate parabolic equations";s:9:"metadata6";s:25:"CANNARSA, P; DE TERESA, L";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:63;a:14:{s:9:"citazione";s:220:"CANNARSA, P., CARDALIAGUET, P., & SINESTRARI, C. (2009). On a differential model for growing sandpiles with non-regular sources. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 343, 656-675 [10.1080/03605300902909966].";s:4:"data";s:4:"2009";s:2:"id";s:19:"PUBBLICAZIONE_52998";s:6:"handle";s:10:"2108/55258";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:70:"On a differential model for growing sandpiles with non-regular sources";s:9:"metadata6";s:43:"CANNARSA, P; CARDALIAGUET, P; SINESTRARI, C";s:9:"metadata7";s:25:"10.1080/03605300902909966";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:64;a:14:{s:9:"citazione";s:174:"CANNARSA, P., FRANKOWSKA, H., & MARCHINI E., M. (2009). On Bolza optimal control problems with constraints. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES B., 11, 629-653.";s:4:"data";s:4:"2009";s:2:"id";s:20:"PUBBLICAZIONE_216322";s:6:"handle";s:11:"2108/102813";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:50:"On Bolza optimal control problems with constraints";s:9:"metadata6";s:42:"CANNARSA, P; FRANKOWSKA, H; MARCHINI E., M";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:65;a:14:{s:9:"citazione";s:135:"Cannarsa, P., & Yu, Y. (2009). Singular dynamics for semiconcave functions. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 11, 999-1024.";s:4:"data";s:4:"2009";s:2:"id";s:20:"PUBBLICAZIONE_216319";s:6:"handle";s:11:"2108/102780";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:43:"Singular dynamics for semiconcave functions";s:9:"metadata6";s:18:"Cannarsa, P; Yu, Y";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:66;a:14:{s:9:"citazione";s:205:"Cannarsa, P., Frankowska, H., & Marchini, E. (2009). Existence and Lipschitz regularity of solutions to Bolza problems in optimal control. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 361, 4491-4517.";s:4:"data";s:4:"2009";s:2:"id";s:20:"PUBBLICAZIONE_216321";s:6:"handle";s:11:"2108/102770";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:84:"Existence and Lipschitz regularity of solutions to Bolza problems in optimal control";s:9:"metadata6";s:39:"Cannarsa, P; Frankowska, H; Marchini, E";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:67;a:14:{s:9:"citazione";s:188:"Cannarsa, P., Martinez, P., & Vancostenoble, J. (2009). Carleman estimates and null controllability for boundary-degenerate parabolic operators. COMPTES RENDUS MATHÉMATIQUE, 347, 147-152.";s:4:"data";s:4:"2009";s:2:"id";s:20:"PUBBLICAZIONE_216316";s:6:"handle";s:11:"2108/102773";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:87:"Carleman estimates and null controllability for boundary-degenerate parabolic operators";s:9:"metadata6";s:42:"Cannarsa, P; Martinez, P; Vancostenoble, J";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:68;a:14:{s:9:"citazione";s:202:"Alabau-Boussouira, F., Cannarsa, P., & Sforza, D. (2008). Decay estimates for second order evolution equations with memory. JOURNAL OF FUNCTIONAL ANALYSIS, 254(5), 1342-1372 [10.1016/j.jfa.2007.09.012].";s:4:"data";s:4:"2008";s:2:"id";s:19:"PUBBLICAZIONE_11796";s:6:"handle";s:10:"2108/55584";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:64:"Decay estimates for second order evolution equations with memory";s:9:"metadata6";s:44:"Alabau-Boussouira, F; Cannarsa, P; Sforza, D";s:9:"metadata7";s:25:"10.1016/j.jfa.2007.09.012";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:69;a:14:{s:9:"citazione";s:235:"CANNARSA, P., & RIFFORD, L. (2008). Semiconcavity results for optimal control problems admitting no singular minimizing controls. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 25, 773-802 [10.1016/j.anihpc.2007.07.005].";s:4:"data";s:4:"2008";s:2:"id";s:20:"PUBBLICAZIONE_216324";s:6:"handle";s:11:"2108/102806";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:92:"Semiconcavity results for optimal control problems admitting no singular minimizing controls";s:9:"metadata6";s:23:"CANNARSA, P; RIFFORD, L";s:9:"metadata7";s:28:"10.1016/j.anihpc.2007.07.005";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:70;a:14:{s:9:"citazione";s:174:"CANNARSA, P., MARTINEZ, P., & VANCOSTENOBLE, J. (2008). Carleman estimates for a class of degenerate parabolic operators. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 47, 1-19.";s:4:"data";s:4:"2008";s:2:"id";s:20:"PUBBLICAZIONE_216325";s:6:"handle";s:11:"2108/102792";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:65:"Carleman estimates for a class of degenerate parabolic operators";s:9:"metadata6";s:42:"CANNARSA, P; MARTINEZ, P; VANCOSTENOBLE, J";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:71;a:14:{s:9:"citazione";s:195:"CANNARSA, P., Rocchetti, D., & Vancostenoble, J. (2008). Generation of analytic semi-groups in L-2 for a class of second order degenerate elliptic operators. CONTROL AND CYBERNETICS, 37, 831-878.";s:4:"data";s:4:"2008";s:2:"id";s:20:"PUBBLICAZIONE_216327";s:6:"handle";s:11:"2108/102788";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:99:"Generation of analytic semi-groups in L-2 for a class of second order degenerate elliptic operators";s:9:"metadata6";s:43:"CANNARSA, P; Rocchetti, D; Vancostenoble, J";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:72;a:14:{s:9:"citazione";s:179:"Cannarsa, P., & Castelpietra, M. (2008). Lipschitz continuity of the value function for exit time problems with state constraints. JOURNAL OF DIFFERENTIAL EQUATIONS, 245, 616-636.";s:4:"data";s:4:"2008";s:2:"id";s:20:"PUBBLICAZIONE_216326";s:6:"handle";s:11:"2108/102791";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:88:"Lipschitz continuity of the value function for exit time problems with state constraints";s:9:"metadata6";s:28:"Cannarsa, P; Castelpietra, M";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:73;a:14:{s:9:"citazione";s:128:"Cannarsa, P., & D'Aprile, T. (2008). Introduzione alla teoria della misura e all’analisi funzionale. MILANO : Springer Italia.";s:4:"data";s:4:"2008";s:2:"id";s:19:"PUBBLICAZIONE_49884";s:6:"handle";s:10:"2108/13694";s:9:"metadata1";s:10:"Monografia";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:64:"Introduzione alla teoria della misura e all’analisi funzionale";s:9:"metadata6";s:24:"Cannarsa, P; D'Aprile, T";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:74;a:14:{s:9:"citazione";s:167:"Cannarsa, P., & Sforza, D. (2008). A stability result for a class of nonlinear integrodifferential equations with L1 kernels. APPLICATIONS OF MATHEMATICS, 35, 395-430.";s:4:"data";s:4:"2008";s:2:"id";s:20:"PUBBLICAZIONE_216328";s:6:"handle";s:11:"2108/102818";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:89:"A stability result for a class of nonlinear integrodifferential equations with L1 kernels";s:9:"metadata6";s:22:"Cannarsa, P; Sforza, D";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:75;a:14:{s:9:"citazione";s:180:"Cannarsa, P., Castelpietra, M., & Cardaliaguet, P. (2008). Regularity properties of attainable sets under state constraints, 76, 120-135 [10.1142/9789812776075_0006].";s:4:"data";s:4:"2008";s:2:"id";s:20:"PUBBLICAZIONE_216416";s:6:"handle";s:11:"2108/102815";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:78:"Regularity properties of attainable sets under state constraints";s:9:"metadata6";s:45:"Cannarsa, P; Castelpietra, M; Cardaliaguet, P";s:9:"metadata7";s:26:"10.1142/9789812776075_0006";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:76;a:14:{s:9:"citazione";s:204:"Cannarsa, P., Fragnelli, G., & Rocchetti, D. (2008). Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form. JOURNAL OF EVOLUTION EQUATIONS, 8, 583-616.";s:4:"data";s:4:"2008";s:2:"id";s:20:"PUBBLICAZIONE_216323";s:6:"handle";s:11:"2108/102797";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:106:"Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form";s:9:"metadata6";s:39:"Cannarsa, P; Fragnelli, G; Rocchetti, D";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:77;a:14:{s:9:"citazione";s:282:"Cannarsa, P., Cardaliaguet, P., Crasta, G., & Giorgieri, E. (2005). A boundary value problem for a PDE model in mass transfer theory: Representation of solutions and applications. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 24(4), 431-457 [10.1007/s00526-005-0328-7].";s:4:"data";s:4:"2005";s:2:"id";s:18:"PUBBLICAZIONE_2840";s:6:"handle";s:10:"2108/55587";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:110:"A boundary value problem for a PDE model in mass transfer theory: Representation of solutions and applications";s:9:"metadata6";s:53:"Cannarsa, P; Cardaliaguet, P; Crasta, G; Giorgieri, E";s:9:"metadata7";s:25:"10.1007/s00526-005-0328-7";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:78;a:14:{s:9:"citazione";s:185:"Cannarsa, P., & Cardaliaguet, P. (2004). Representation of equilibrium solutions to the table problem for growing sandpiles. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 6(4), 435-464.";s:4:"data";s:4:"2004";s:2:"id";s:19:"PUBBLICAZIONE_19346";s:6:"handle";s:10:"2108/55585";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:82:"Representation of equilibrium solutions to the table problem for growing sandpiles";s:9:"metadata6";s:28:"Cannarsa, P; Cardaliaguet, P";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:79;a:14:{s:9:"citazione";s:131:"Cannarsa, P., & Sinestrari, C. (2004). Semiconcave functions, Hamilton-Jacobi equations, and optimal control. BOSTON : Birkhäuser.";s:4:"data";s:4:"2004";s:2:"id";s:20:"PUBBLICAZIONE_106328";s:6:"handle";s:10:"2108/55418";s:9:"metadata1";s:10:"Monografia";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:69:"Semiconcave functions, Hamilton-Jacobi equations, and optimal control";s:9:"metadata6";s:26:"Cannarsa, P; Sinestrari, C";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:80;a:14:{s:9:"citazione";s:108:"Cannarsa, P., Giorgieri, E., & Tessitore, M.E. (2004). Lecture notes on dynamic optimization. Roma : texmat.";s:4:"data";s:4:"2004";s:2:"id";s:19:"PUBBLICAZIONE_45063";s:6:"handle";s:10:"2108/14779";s:9:"metadata1";s:10:"Monografia";s:9:"metadata2";N;s:9:"metadata3";s:38:"Settore SECS-P/06 - Economia Applicata";s:9:"metadata4";N;s:9:"metadata5";s:37:"Lecture notes on dynamic optimization";s:9:"metadata6";s:40:"Cannarsa, P; Giorgieri, E; Tessitore, ME";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}}" } ["meta_keywords"]=> array(1) { [0]=> string(1) "," } ["reserved"]=> array(1) { [0]=> string(1) "0" } ["auth_ip"]=> array(1) { [0]=> string(1) "0" } } ["_fieldBoosts":protected]=> array(6) { ["content_id"]=> bool(false) ["content_title"]=> bool(false) ["description"]=> bool(false) ["meta_keywords"]=> bool(false) ["reserved"]=> bool(false) ["auth_ip"]=> bool(false) } } }