array(1) { [0]=> object(Apache_Solr_Document)#24 (3) { ["_documentBoost":protected]=> bool(false) ["_fields":protected]=> array(6) { ["content_id"]=> array(1) { [0]=> string(14) "DIRECTORY_3955" } ["content_title"]=> array(1) { [0]=> string(16) "LUCIO DAMASCELLI" } ["description"]=> array(1) { [0]=> string(17022) "

CURRICULUM  BREVE  DI   LUCIO DAMASCELLI 

  Nato a Roma il 27-6-1963,  residente in Via S.Erasmo 12, 00184 ROMA. 

POSIZIONI E TITOLI: Professore associato, nel settore disciplinare Mat/05, Analisi Matematica, presso la Facolta' di Ingegneria dell' Universita' di Tor Vergata, Roma dal 1-11-2001. Confermato in ruolo il 1-11-2004. 

 Precedentemente:

 Ricercatore, nel settore disciplinare A02A, Analisi Matematica, presso l'Universita' di Tor Vergata, Roma dal 1-11-1996.

Confermato in ruolo il 1-11-1999. 

Titolo di Dottore di Ricerca - Universita' di Roma  ``La Sapienza'' -  1997  

Borsista Indam (1991-92) e S.A.S.I.A.M. (1992). 

Laurea in Matematica  con lode - Universita' di Roma  ``La Sapienza'' - 1991. 

ATTIVITA' DIDATTICA UNIVERSITARIA: 

A partire dal 1996 ha tenuto ogni anno corsi di Analisi Matematica e Analisi Funzionale presso  la facolta' di  Ingegneria  dell'Universita' di Roma II, dal 2015 anche nella facoltà’ di Scienze.

STUDENTI DI DOTTORATO:  Berardino Sciunzi (titolo ottenuto nel 2005)

ATTIVITA' DI RICERCA: 

Ha svolto attivita' di ricerca presso istituzioni scientifiche estere, tra le quali:

 Laboratoires d'Analyse  Numerique ( Universit\'e Paris VI) nel periodo 1/1/1998 - 30/9/1998, Universidad Autonoma de  Madrid (maggio 1999), T.I.F.R. Centre ( Bangalore,India) (gennaio 2000), Universit\'e de Nice 

Sophia-Antipolis  (Nizza) (gennaio 2001 e marzo 2004). 

 Ha tenuto Conferenze su invito in vari Congressi e Istituzioni universitarie, tra i quali

Congressi ''Nonlinear Boundary Value Problems''  in varie sedi italiane, 

 Congressi ``  Metodi Variazionali ed Equazioni Differenziali  Non Lineari '' in varie sedi italiane, 

 Congressi U.M.I. in varie sedi italiane, 

``Singularity in nonlinear elliptic problems'' - Roma, 

``A Week End in Nonlinear Analysis'' - Roma, 

'' Giornate Nonlineari ''    - Roma, 

International Symposium on Variational Methods and Nonlinear Differential Equations on the occasion of Antonio Ambrosetti's 60th birthday - Roma,  

 Fifth European Conference on Elliptic and Parabolic Problems: A special tribute to the work of Haim Brezis - Gaeta, 

 International Workshop on ''Symmetry in nonlinear elliptic  PDE's''- Wolfgang Pauli Institute -VIENNA,  

Spring School in Nonlinear Partial Differential Equations, Louvain-la-Neuve;  

Ecole Normale Superieure-Paris, 

Universita' di Bologna, 

Universidad Autonoma de  Madrid, 

T.I.F.R. Centre ( Bangalore,India), 

Universita' di Perugia, 

Universita' di Trieste, 

Universite' de Nice  Sophia-Antipolis (Nizza), 

Universita' di Roma ''La Sapienza'', 

Wolfgang Pauli Institute -VIENNA, 

Universita' di Milano. 

 INTERESSI DI RICERCA: 

 [A]  Studio di equazioni ellittiche semilineari

del tipo $  -\Delta  u  = f(u)  $

(si vedano i lavori [2], [3], [7], [10],[13], [14]).\\

[B]  Studio di problemi ellittici singolari e degeneri, ad esempio del tipo $  -\Delta _p  u  = f(u)  $

(si vedano i lavori [4],[5],[6],[8],[9],[11],[13], [16],[17], [18], [19], [20]). \\

[C] Studio di problemi ellittici su variet\`a

(si vedano i lavori [12], [15]).

[D]  Studio di sistemi di equazioni ellittiche semilineari (si vedano i lavori [21], [22], [23] ).

      

 [1]   L.Damascelli,  Proprieta' qualitative delle soluzioni

positive di una classe di problemi ellittici non lineari, Tesi di Dottorato,  Universita' di Roma La Sapienza 1996

 [2]  L.Damascelli, A remark on the uniqueness of the positive solution for a

semilinear elliptic equation, Nonlinear Anal. T.M.A. 26 (1996), 211-216

 [3]   L.Damascelli, Some remarks on the method of moving planes,  Diff.Int.Eq. 11 (3) (1998), 493-501

 [4]  L.Damascelli,  Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Annales Inst. Henry  Poincar\'e ANL 15 (4) (1998), 493-516

 [5]  L.Damascelli,  F.Pacella,  Monotonicity and Symmetry of solutions of

$p$-Laplace equations,  $1

 Rend. Mat. Acc. Lincei, s.9,vol.9 , fasc.2 (1998), 95-100

 [6]   L.Damascelli,  F.Pacella,    Monotonicity and Symmetry of solutions of $p$-Laplace equations,  $1

 Ann.Sc.Norm.Sup. Pisa Cl.Sci. (4)  Vol. XXVI  (1998), 689-707

 [7]  L.Damascelli,M.Grossi,  F.Pacella,  Qualitative properties of positive solutions of semilinear  elliptic equations in symmetric domains via the maximum principle,   Annales Inst. Henry  Poincar\'e ANL  16 (5) (1999), 631-652

[8]  L.Damascelli,  F.Pacella, M.Ramaswamy, Symmetry of ground states of $p$-Laplace equations via the moving plane  method,    Archive Rat.Mech.Anal. 148 (1999), 291-308

[9]  L.Damascelli,  F.Pacella,  Monotonicity and Symmetry results  for $p$-Laplace equations  and applications, Advances Diff. Eq. 5 (7-9) (2000), 1179-1200

[10]  L.Damascelli,  On the nodal set of the second eigenfunction of the laplacian in symmetric domains in $\R ^N $ ,  Rend. Mat. Acc. Lincei, s. 9, vol. 11, fasc. 3 (2000), 175-181 

[11]  L.Damascelli, M.Ramaswamy,  Symmetry of $C^1$ solutions of $p$-Laplace equations in $R^N$, Advanced Nonlinear Studies 1 (1) (2001), 40-64 

[12] L. Almeida, L. Damascelli, Y. Ge, A few symmetry results for nonlinear elliptic PDE on noncompact manifolds,  Annales Inst. Henry  Poincar\'e ANL 19 (3) (2002), 313-342,  

[13] L.Damascelli,  F.Pacella, M.Ramaswamy, A strong maximum principle for a class of non-positone singular elliptic problems, NoDEA 10 (2003), 187-196

[14] L. Damascelli, F. Gladiali,  Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat.  Iberoamericana 20 (1) (2004), 67-86

[15] L. Almeida, L. Damascelli,  Y. Ge,   Regularity of positive solutions of $p$-Laplace equations on manifolds and its applications, Lecture notes of Seminario Interdisciplinare di Matematica vol. 3 (2004), Proceedings of the Workshop on "Second order subelliptic equations and applications", Cortona, June 16-22, 2003

[16] L. Damascelli, B. Sciunzi,  Regularity, Monotonicity and Symmetry of Positive Solutions of  $m$-Laplace equations, J. Differential equations 206 (2), (2004), 483-515

[17]  L. Damascelli, B. Sciunzi,   Qualitative properties of solutions of $m$-Laplace systems, Advanced Nonlinear Studies 5 (2) (2005), 197-221

[18]  L. Damascelli, B. Sciunzi,  Harnack inequalities, Maximum and Comparison Principles, and Regularity of Positive solutions of $m$-Laplace equations, Calculus Var. PDE 25 (2), (2006), 139-159

[19]  L. Damascelli, A. Farina,  B. Sciunzi, E. Valdinoci,   Liouville  results for $m$-Laplace equations of Lane-Emden-Fowler type,  Annales Inst. Henry  Poincare' ANL, 26 (4) (2009),  1099-1119

[20]  L. Damascelli, B. Sciunzi,    Liouville  results for $m$-Laplace equations in a half plane in  $\R^2$, Diff. Integral Eq., 23 (5-6), ( 2010) 419-434  

[21] L. Damascelli, F. Pacella, Symmetry results for cooperative elliptic systems via linearization,   SIAM J. Math. Anal. 45 (2013), no. 3, 1003-1026  

[22] L. Damascelli, F. Gladiali, F. Pacella, A symmetry result for semilinear cooperative elliptic systems, Contemporary Mathematics 595 (2013), 187--204

[23]  L. Damascelli, F. Gladiali, F. Pacella, Symmetry results for cooperative elliptic systems in unbounded domains,  Indiana Univ. Math. J. 63 No. 3 (2014), 615--649

[24] L. Damascelli, S. Merchan, L. Montoro, B. Sciunzi, Radial symmetry and applications  for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in~$\mathbb{R}^N$,  Adv. Math. ,  265 (2014), 313--335

  LUCIO DAMASCELLI  ’S SHORT CURRICULUM 

  Born in Roma, 27-6-1963. 

POSITIONS AND DEGREES:  Associate Professor in Mathematical Analysis,  Engineering Faculty in Rome University ''Tor Vergata'', since 1-11-2001, previously Researcher in the same University since 1996.  

 P.H.D. in 1997 -  Rome University  ``La Sapienza'' -   

 Master in Mathematics cum laude in 1991 - Rome University  ``La Sapienza'' -   

TEACHING ACTIVITY: Courses in Mathematical Analysis and Functional Analysis since 1996 in Rome University ''Tor Vergata''. 

P.H.D. STUDENTS:  Berardino Sciunzi (P.H.D. in  2005) 

RESEARCH ACTIVITY: Research activity in Rome University and other Scientific Institutions, such as    

Laboratoires d'Analyse  Numerique ( Universite' Paris VI), Universidad Autonoma de  Madrid, T.I.F.R. Centre ( Bangalore, India), Universite' de Nice 

Sophia-Antipolis.  

 Conferences  in several Congresses and in  Scientific Institutions, among them 

         Congressi U.M.I. in varie sedi italiane, 

``Singularity in nonlinear elliptic problems'' - Roma, 

``A Week End in Nonlinear Analysis'' - Roma, 

'' Giornate Nonlineari ''    - Roma, 

International Symposium on Variational Methods and Nonlinear  Differential Equations on the occasion of Antonio Ambrosetti's 60th birthday - Roma,  

 Fifth European Conference on Elliptic and Parabolic Problems: A special tribute to the work of Haim Brezis - Gaeta, 

 International Workshop on ''Symmetry in nonlinear elliptic  PDE's''- Wolfgang Pauli Institute -VIENNA,  

Spring School in Nonlinear Partial Differential Equations, Louvain-la-Neuve;  Ecole Normale Superieure-Paris, 

 Universita' di Bologna, 

 Universidad Autonoma de  Madrid, 

 T.I.F.R. Centre ( Bangalore,India), 

Universita' di Perugia, 

Universita' di Trieste, 

 Universite' de Nice  Sophia-Antipolis (Nizza), 

 Universita' di Roma ''La Sapienza'', 

 Wolfgang Pauli Institute -VIENNA, 

Universita' di Milano. 

RESEARCH INTERESTS

 [A]  Study of elliptic semilinear equations of the type  $  -\Delta  u  = f(u)  $

(see [2], [3], [7], [10],[13], [14]).\\

[B]  Study of singular and degenerate elliptic problems, e.g. of the type $  -\Delta _p  u  = f(u)  $

(see [4],[5],[6],[8],[9],[11],[13], [16],[17], [18], [19], [20]). \\

[C] Study of elliptic problems on manifolds

(see [12], [15]).

 

  

 [1]   L.Damascelli,  Proprieta' qualitative delle soluzioni

positive di una classe di problemi ellittici non lineari, Tesi di Dottorato,  Universita' di Roma La Sapienza 1996

 [2]  L.Damascelli, A remark on the uniqueness of the positive solution for a

semilinear elliptic equation, Nonlinear Anal. T.M.A. 26 (1996), 211-216

 [3]   L.Damascelli, Some remarks on the method of moving planes,  Diff.Int.Eq. 11 (3) (1998), 493-501

 [4]  L.Damascelli,  Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Annales Inst. Henry  Poincar\'e ANL 15 (4) (1998), 493-516

 [5]  L.Damascelli,  F.Pacella,  Monotonicity and Symmetry of solutions of

$p$-Laplace equations,  $1

 Rend. Mat. Acc. Lincei, s.9,vol.9 , fasc.2 (1998), 95-100

 [6]   L.Damascelli,  F.Pacella,    Monotonicity and Symmetry of solutions of $p$-Laplace equations,  $1

 Ann.Sc.Norm.Sup. Pisa Cl.Sci. (4)  Vol. XXVI  (1998), 689-707

 [7]  L.Damascelli,M.Grossi,  F.Pacella,  Qualitative properties of positive solutions of semilinear  elliptic equations in symmetric domains via the maximum principle,   Annales Inst. Henry  Poincar\'e ANL  16 (5) (1999), 631-652

[8]  L.Damascelli,  F.Pacella, M.Ramaswamy, Symmetry of ground states of $p$-Laplace equations via the moving plane  method,    Archive Rat.Mech.Anal. 148 (1999), 291-308

[9]  L.Damascelli,  F.Pacella,  Monotonicity and Symmetry results  for $p$-Laplace equations  and applications, Advances Diff. Eq. 5 (7-9) (2000), 1179-1200

[10]  L.Damascelli,  On the nodal set of the second eigenfunction of the laplacian in symmetric domains in $\R ^N $ ,  Rend. Mat. Acc. Lincei, s. 9, vol. 11, fasc. 3 (2000), 175-181 

[11]  L.Damascelli, M.Ramaswamy,  Symmetry of $C^1$ solutions of $p$-Laplace equations in $R^N$, Advanced Nonlinear Studies 1 (1) (2001), 40-64 

[12] L. Almeida, L. Damascelli, Y. Ge, A few symmetry results for nonlinear elliptic PDE on noncompact manifolds,  Annales Inst. Henry  Poincar\'e ANL 19 (3) (2002), 313-342,  

[13] L.Damascelli,  F.Pacella, M.Ramaswamy, A strong maximum principle for a class of non-positone singular elliptic problems, NoDEA 10 (2003), 187-196

[14] L. Damascelli, F. Gladiali,  Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat.  Iberoamericana 20 (1) (2004), 67-86

[15] L. Almeida, L. Damascelli,  Y. Ge,   Regularity of positive solutions of $p$-Laplace equations on manifolds and its applications, Lecture notes of Seminario Interdisciplinare di Matematica vol. 3 (2004), Proceedings of the Workshop on "Second order subelliptic equations and applications", Cortona, June 16-22, 2003

[16] L. Damascelli, B. Sciunzi,  Regularity, Monotonicity and Symmetry of Positive Solutions of  $m$-Laplace equations, J. Differential equations 206 (2), (2004), 483-515

[17]  L. Damascelli, B. Sciunzi,   Qualitative properties of solutions of $m$-Laplace systems, Advanced Nonlinear Studies 5 (2) (2005), 197-221

[18]  L. Damascelli, B. Sciunzi,  Harnack inequalities, Maximum and Comparison Principles, and Regularity of Positive solutions of $m$-Laplace equations, Calculus Var. PDE 25 (2), (2006), 139-159

[19]  L. Damascelli, A. Farina,  B. Sciunzi, E. Valdinoci,   Liouville  results for $m$-Laplace equations of Lane-Emden-Fowler type,  Annales Inst. Henry  Poincare' ANL, 26 (4) (2009),  1099-1119

[20]  L. Damascelli, B. Sciunzi,    Liouville  results for $m$-Laplace equations in a half plane in  $\R^2$, Diff. Integral Eq., 23 (5-6), ( 2010) 419-434  

[21] L. Damascelli, F. Pacella, Symmetry results for cooperative elliptic systems via linearization,   SIAM J. Math. Anal. 45 (2013), no. 3, 1003-1026  

[22] L. Damascelli, F. Gladiali, F. Pacella, A symmetry result for semilinear cooperative elliptic systems, Contemporary Mathematics 595 (2013), 187--204

[23]  L. Damascelli, F. Gladiali, F. Pacella, Symmetry results for cooperative elliptic systems in unbounded domains,  Indiana Univ. Math. J. 63 No. 3 (2014), 615--649

[24] L. Damascelli, S. Merchan, L. Montoro, B. Sciunzi, Radial symmetry and applications  for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in~$\mathbb{R}^N$,  Adv. Math. ,  265 (2014), 313--335

a:0:{}" } ["meta_keywords"]=> array(1) { [0]=> string(1) "," } ["reserved"]=> array(1) { [0]=> string(1) "0" } ["auth_ip"]=> array(1) { [0]=> string(1) "0" } } ["_fieldBoosts":protected]=> array(6) { ["content_id"]=> bool(false) ["content_title"]=> bool(false) ["description"]=> bool(false) ["meta_keywords"]=> bool(false) ["reserved"]=> bool(false) ["auth_ip"]=> bool(false) } } }