CURRICULUM BREVE DI LUCIO DAMASCELLI
Nato a Roma il 27-6-1963, residente in Via S.Erasmo 12, 00184 ROMA.
POSIZIONI E TITOLI: Professore associato, nel settore disciplinare Mat/05, Analisi Matematica, presso la Facolta' di Ingegneria dell' Universita' di Tor Vergata, Roma dal 1-11-2001. Confermato in ruolo il 1-11-2004.
Precedentemente:
Ricercatore, nel settore disciplinare A02A, Analisi Matematica, presso l'Universita' di Tor Vergata, Roma dal 1-11-1996.
Confermato in ruolo il 1-11-1999.
Titolo di Dottore di Ricerca - Universita' di Roma ``La Sapienza'' - 1997
Borsista Indam (1991-92) e S.A.S.I.A.M. (1992).
Laurea in Matematica con lode - Universita' di Roma ``La Sapienza'' - 1991.
ATTIVITA' DIDATTICA UNIVERSITARIA:
A partire dal 1996 ha tenuto ogni anno corsi di Analisi Matematica e Analisi Funzionale presso la facolta' di Ingegneria dell'Universita' di Roma II, dal 2015 anche nella facoltà’ di Scienze.
STUDENTI DI DOTTORATO: Berardino Sciunzi (titolo ottenuto nel 2005)
ATTIVITA' DI RICERCA:
Ha svolto attivita' di ricerca presso istituzioni scientifiche estere, tra le quali:
Laboratoires d'Analyse Numerique ( Universit\'e Paris VI) nel periodo 1/1/1998 - 30/9/1998, Universidad Autonoma de Madrid (maggio 1999), T.I.F.R. Centre ( Bangalore,India) (gennaio 2000), Universit\'e de Nice
Sophia-Antipolis (Nizza) (gennaio 2001 e marzo 2004).
Ha tenuto Conferenze su invito in vari Congressi e Istituzioni universitarie, tra i quali
Congressi ''Nonlinear Boundary Value Problems'' in varie sedi italiane,
Congressi `` Metodi Variazionali ed Equazioni Differenziali Non Lineari '' in varie sedi italiane,
Congressi U.M.I. in varie sedi italiane,
``Singularity in nonlinear elliptic problems'' - Roma,
``A Week End in Nonlinear Analysis'' - Roma,
'' Giornate Nonlineari '' - Roma,
International Symposium on Variational Methods and Nonlinear Differential Equations on the occasion of Antonio Ambrosetti's 60th birthday - Roma,
Fifth European Conference on Elliptic and Parabolic Problems: A special tribute to the work of Haim Brezis - Gaeta,
International Workshop on ''Symmetry in nonlinear elliptic PDE's''- Wolfgang Pauli Institute -VIENNA,
Spring School in Nonlinear Partial Differential Equations, Louvain-la-Neuve;
Ecole Normale Superieure-Paris,
Universita' di Bologna,
Universidad Autonoma de Madrid,
T.I.F.R. Centre ( Bangalore,India),
Universita' di Perugia,
Universita' di Trieste,
Universite' de Nice Sophia-Antipolis (Nizza),
Universita' di Roma ''La Sapienza'',
Wolfgang Pauli Institute -VIENNA,
Universita' di Milano.
INTERESSI DI RICERCA:
[A] Studio di equazioni ellittiche semilineari
del tipo $ -\Delta u = f(u) $
(si vedano i lavori [2], [3], [7], [10],[13], [14]).\\
[B] Studio di problemi ellittici singolari e degeneri, ad esempio del tipo $ -\Delta _p u = f(u) $
(si vedano i lavori [4],[5],[6],[8],[9],[11],[13], [16],[17], [18], [19], [20]). \\
[C] Studio di problemi ellittici su variet\`a
(si vedano i lavori [12], [15]).
[D] Studio di sistemi di equazioni ellittiche semilineari (si vedano i lavori [21], [22], [23] ).
[1] L.Damascelli, Proprieta' qualitative delle soluzioni
positive di una classe di problemi ellittici non lineari, Tesi di Dottorato, Universita' di Roma La Sapienza 1996
[2] L.Damascelli, A remark on the uniqueness of the positive solution for a
semilinear elliptic equation, Nonlinear Anal. T.M.A. 26 (1996), 211-216
[3] L.Damascelli, Some remarks on the method of moving planes, Diff.Int.Eq. 11 (3) (1998), 493-501
[4] L.Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Annales Inst. Henry Poincar\'e ANL 15 (4) (1998), 493-516
[5] L.Damascelli, F.Pacella, Monotonicity and Symmetry of solutions of
$p$-Laplace equations, $1
Rend. Mat. Acc. Lincei, s.9,vol.9 , fasc.2 (1998), 95-100
[6] L.Damascelli, F.Pacella, Monotonicity and Symmetry of solutions of $p$-Laplace equations, $1
Ann.Sc.Norm.Sup. Pisa Cl.Sci. (4) Vol. XXVI (1998), 689-707
[7] L.Damascelli,M.Grossi, F.Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Annales Inst. Henry Poincar\'e ANL 16 (5) (1999), 631-652
[8] L.Damascelli, F.Pacella, M.Ramaswamy, Symmetry of ground states of $p$-Laplace equations via the moving plane method, Archive Rat.Mech.Anal. 148 (1999), 291-308
[9] L.Damascelli, F.Pacella, Monotonicity and Symmetry results for $p$-Laplace equations and applications, Advances Diff. Eq. 5 (7-9) (2000), 1179-1200
[10] L.Damascelli, On the nodal set of the second eigenfunction of the laplacian in symmetric domains in $\R ^N $ , Rend. Mat. Acc. Lincei, s. 9, vol. 11, fasc. 3 (2000), 175-181
[11] L.Damascelli, M.Ramaswamy, Symmetry of $C^1$ solutions of $p$-Laplace equations in $R^N$, Advanced Nonlinear Studies 1 (1) (2001), 40-64
[12] L. Almeida, L. Damascelli, Y. Ge, A few symmetry results for nonlinear elliptic PDE on noncompact manifolds, Annales Inst. Henry Poincar\'e ANL 19 (3) (2002), 313-342,
[13] L.Damascelli, F.Pacella, M.Ramaswamy, A strong maximum principle for a class of non-positone singular elliptic problems, NoDEA 10 (2003), 187-196
[14] L. Damascelli, F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamericana 20 (1) (2004), 67-86
[15] L. Almeida, L. Damascelli, Y. Ge, Regularity of positive solutions of $p$-Laplace equations on manifolds and its applications, Lecture notes of Seminario Interdisciplinare di Matematica vol. 3 (2004), Proceedings of the Workshop on "Second order subelliptic equations and applications", Cortona, June 16-22, 2003
[16] L. Damascelli, B. Sciunzi, Regularity, Monotonicity and Symmetry of Positive Solutions of $m$-Laplace equations, J. Differential equations 206 (2), (2004), 483-515
[17] L. Damascelli, B. Sciunzi, Qualitative properties of solutions of $m$-Laplace systems, Advanced Nonlinear Studies 5 (2) (2005), 197-221
[18] L. Damascelli, B. Sciunzi, Harnack inequalities, Maximum and Comparison Principles, and Regularity of Positive solutions of $m$-Laplace equations, Calculus Var. PDE 25 (2), (2006), 139-159
[19] L. Damascelli, A. Farina, B. Sciunzi, E. Valdinoci, Liouville results for $m$-Laplace equations of Lane-Emden-Fowler type, Annales Inst. Henry Poincare' ANL, 26 (4) (2009), 1099-1119
[20] L. Damascelli, B. Sciunzi, Liouville results for $m$-Laplace equations in a half plane in $\R^2$, Diff. Integral Eq., 23 (5-6), ( 2010) 419-434
[21] L. Damascelli, F. Pacella, Symmetry results for cooperative elliptic systems via linearization, SIAM J. Math. Anal. 45 (2013), no. 3, 1003-1026
[22] L. Damascelli, F. Gladiali, F. Pacella, A symmetry result for semilinear cooperative elliptic systems, Contemporary Mathematics 595 (2013), 187--204
[23] L. Damascelli, F. Gladiali, F. Pacella, Symmetry results for cooperative elliptic systems in unbounded domains, Indiana Univ. Math. J. 63 No. 3 (2014), 615--649
[24] L. Damascelli, S. Merchan, L. Montoro, B. Sciunzi, Radial symmetry and applications for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in~$\mathbb{R}^N$, Adv. Math. , 265 (2014), 313--335
LUCIO DAMASCELLI ’S SHORT CURRICULUM
Born in Roma, 27-6-1963.
POSITIONS AND DEGREES: Associate Professor in Mathematical Analysis, Engineering Faculty in Rome University ''Tor Vergata'', since 1-11-2001, previously Researcher in the same University since 1996.
P.H.D. in 1997 - Rome University ``La Sapienza'' -
Master in Mathematics cum laude in 1991 - Rome University ``La Sapienza'' -
TEACHING ACTIVITY: Courses in Mathematical Analysis and Functional Analysis since 1996 in Rome University ''Tor Vergata''.
P.H.D. STUDENTS: Berardino Sciunzi (P.H.D. in 2005)
RESEARCH ACTIVITY: Research activity in Rome University and other Scientific Institutions, such as
Laboratoires d'Analyse Numerique ( Universite' Paris VI), Universidad Autonoma de Madrid, T.I.F.R. Centre ( Bangalore, India), Universite' de Nice
Sophia-Antipolis.
Conferences in several Congresses and in Scientific Institutions, among them
Congressi U.M.I. in varie sedi italiane,
``Singularity in nonlinear elliptic problems'' - Roma,
``A Week End in Nonlinear Analysis'' - Roma,
'' Giornate Nonlineari '' - Roma,
International Symposium on Variational Methods and Nonlinear Differential Equations on the occasion of Antonio Ambrosetti's 60th birthday - Roma,
Fifth European Conference on Elliptic and Parabolic Problems: A special tribute to the work of Haim Brezis - Gaeta,
International Workshop on ''Symmetry in nonlinear elliptic PDE's''- Wolfgang Pauli Institute -VIENNA,
Spring School in Nonlinear Partial Differential Equations, Louvain-la-Neuve; Ecole Normale Superieure-Paris,
Universita' di Bologna,
Universidad Autonoma de Madrid,
T.I.F.R. Centre ( Bangalore,India),
Universita' di Perugia,
Universita' di Trieste,
Universite' de Nice Sophia-Antipolis (Nizza),
Universita' di Roma ''La Sapienza'',
Wolfgang Pauli Institute -VIENNA,
Universita' di Milano.
RESEARCH INTERESTS
[A] Study of elliptic semilinear equations of the type $ -\Delta u = f(u) $
(see [2], [3], [7], [10],[13], [14]).\\
[B] Study of singular and degenerate elliptic problems, e.g. of the type $ -\Delta _p u = f(u) $
(see [4],[5],[6],[8],[9],[11],[13], [16],[17], [18], [19], [20]). \\
[C] Study of elliptic problems on manifolds
(see [12], [15]).
[1] L.Damascelli, Proprieta' qualitative delle soluzioni
positive di una classe di problemi ellittici non lineari, Tesi di Dottorato, Universita' di Roma La Sapienza 1996
[2] L.Damascelli, A remark on the uniqueness of the positive solution for a
semilinear elliptic equation, Nonlinear Anal. T.M.A. 26 (1996), 211-216
[3] L.Damascelli, Some remarks on the method of moving planes, Diff.Int.Eq. 11 (3) (1998), 493-501
[4] L.Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Annales Inst. Henry Poincar\'e ANL 15 (4) (1998), 493-516
[5] L.Damascelli, F.Pacella, Monotonicity and Symmetry of solutions of
$p$-Laplace equations, $1
Rend. Mat. Acc. Lincei, s.9,vol.9 , fasc.2 (1998), 95-100
[6] L.Damascelli, F.Pacella, Monotonicity and Symmetry of solutions of $p$-Laplace equations, $1
Ann.Sc.Norm.Sup. Pisa Cl.Sci. (4) Vol. XXVI (1998), 689-707
[7] L.Damascelli,M.Grossi, F.Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Annales Inst. Henry Poincar\'e ANL 16 (5) (1999), 631-652
[8] L.Damascelli, F.Pacella, M.Ramaswamy, Symmetry of ground states of $p$-Laplace equations via the moving plane method, Archive Rat.Mech.Anal. 148 (1999), 291-308
[9] L.Damascelli, F.Pacella, Monotonicity and Symmetry results for $p$-Laplace equations and applications, Advances Diff. Eq. 5 (7-9) (2000), 1179-1200
[10] L.Damascelli, On the nodal set of the second eigenfunction of the laplacian in symmetric domains in $\R ^N $ , Rend. Mat. Acc. Lincei, s. 9, vol. 11, fasc. 3 (2000), 175-181
[11] L.Damascelli, M.Ramaswamy, Symmetry of $C^1$ solutions of $p$-Laplace equations in $R^N$, Advanced Nonlinear Studies 1 (1) (2001), 40-64
[12] L. Almeida, L. Damascelli, Y. Ge, A few symmetry results for nonlinear elliptic PDE on noncompact manifolds, Annales Inst. Henry Poincar\'e ANL 19 (3) (2002), 313-342,
[13] L.Damascelli, F.Pacella, M.Ramaswamy, A strong maximum principle for a class of non-positone singular elliptic problems, NoDEA 10 (2003), 187-196
[14] L. Damascelli, F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamericana 20 (1) (2004), 67-86
[15] L. Almeida, L. Damascelli, Y. Ge, Regularity of positive solutions of $p$-Laplace equations on manifolds and its applications, Lecture notes of Seminario Interdisciplinare di Matematica vol. 3 (2004), Proceedings of the Workshop on "Second order subelliptic equations and applications", Cortona, June 16-22, 2003
[16] L. Damascelli, B. Sciunzi, Regularity, Monotonicity and Symmetry of Positive Solutions of $m$-Laplace equations, J. Differential equations 206 (2), (2004), 483-515
[17] L. Damascelli, B. Sciunzi, Qualitative properties of solutions of $m$-Laplace systems, Advanced Nonlinear Studies 5 (2) (2005), 197-221
[18] L. Damascelli, B. Sciunzi, Harnack inequalities, Maximum and Comparison Principles, and Regularity of Positive solutions of $m$-Laplace equations, Calculus Var. PDE 25 (2), (2006), 139-159
[19] L. Damascelli, A. Farina, B. Sciunzi, E. Valdinoci, Liouville results for $m$-Laplace equations of Lane-Emden-Fowler type, Annales Inst. Henry Poincare' ANL, 26 (4) (2009), 1099-1119
[20] L. Damascelli, B. Sciunzi, Liouville results for $m$-Laplace equations in a half plane in $\R^2$, Diff. Integral Eq., 23 (5-6), ( 2010) 419-434
[21] L. Damascelli, F. Pacella, Symmetry results for cooperative elliptic systems via linearization, SIAM J. Math. Anal. 45 (2013), no. 3, 1003-1026
[22] L. Damascelli, F. Gladiali, F. Pacella, A symmetry result for semilinear cooperative elliptic systems, Contemporary Mathematics 595 (2013), 187--204
[23] L. Damascelli, F. Gladiali, F. Pacella, Symmetry results for cooperative elliptic systems in unbounded domains, Indiana Univ. Math. J. 63 No. 3 (2014), 615--649
[24] L. Damascelli, S. Merchan, L. Montoro, B. Sciunzi, Radial symmetry and applications for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in~$\mathbb{R}^N$, Adv. Math. , 265 (2014), 313--335