array(1) { [0]=> object(Apache_Solr_Document)#24 (3) { ["_documentBoost":protected]=> bool(false) ["_fields":protected]=> array(6) { ["content_id"]=> array(1) { [0]=> string(14) "DIRECTORY_5118" } ["content_title"]=> array(1) { [0]=> string(16) "CARLO SINESTRARI" } ["description"]=> array(1) { [0]=> string(21546) "

Carlo Sinestrari è nato a Roma nel 1970. Ha conseguito la Laurea in Matematica presso l'Università di Roma "La Sapienza" nel 1992 e il Dottorato di Ricerca in Matematica presso l'Università di Roma "Tor Vergata" nel 1997. A partire dal 2001 è professore di prima fascia di Analisi Matematica presso la Facoltà di Ingegneria dell’Università di Roma “Tor Vergata". Ha tenuto seminari presso numerose università italiane e straniere, tra cui Pisa, Padova, Heidelberg, Berlino, Warwick, Carnegie Mellon, Brown University. E' stato professore visitatore presso varie istituzioni accademiche, tra cui la S.I.S.S.A. di Trieste, la Princeton University, l'Isaac Newton Institute di Cambridge, il Max-Planck-Institut "Albert Einstein" di Potsdam e la Australian National University di Canberra. E' stato conferenziere invitato in numerosi convegni nazionali e internazionali. Ha tenuto corsi avanzati nell'ambito di scuole organizzate dall'ICTP di Trieste e dal CRM di Barcellona. E' stato coordinatore di un'unità locale nell'ambito di un progetto di ricerca Cofin 2002, Prin 2005, Prin 2007 e Prin 2009 e responsabile di un progetto Gnampa 2006. E' stato tra gli organizzatori della "Second Summer School in Analysis and Applied Mathematics" a Roma nel 2005. Dal 2013 è il direttore del collegio dei docenti del dottorato di ricerca in Matematica del suo dipartimento. E' autore di 29 pubblicazioni su riviste internazionali, di alcuni articoli su atti di convegno, della monografia "Semiconcave functions, Hamilton-Jacobi equations and optimal control" (con P. Cannarsa) e di quella "Mean curvature flow and isoperimetric inequalities" (con M. Ritoré). La sua attività di ricerca riguarda alcune classi di equazioni differenziali alle derivate parziali e la teoria del controllo ottimo.

Carlo Sinestrari was born in Rome in 1970. He has done his undergraduate studies at the University of Rome "La Sapienza" and has obtained his P.H.D. in Mathematics at the University of Rome "Tor Vergata". Since 2001 he is full professor in Mathematical Analysis at the Faculty of Engineering of the University of Rome “Tor Vergata”. He has held seminars in several universities in Italy and abroad, including Pisa, Padova, Heidelberg, FU Berlin, Warwick, Carnegie Mellon, Brown University. He has visited various academic institutions, among which the S.I.S.S.A. at Trieste, Princeton University, Isaac Newton Institute at Cambridge, Max-Planck Institute "Albert Einstein" at Potsdam and the Australian National University at Canberra. He has been an invited speaker in various national and international conferences. He has held advanced courses within schools organized by the ICTP (Trieste), the CRM (Barcelona) and the CIME (Int. Math. Summer Center, Florence). He has led a research unit within the research programs Cofin 2002, Prin 2005, Prin 2007 and Prin 2009 and coordinator of a project Gnampa 2006. He was among the organizers of the "Second Summer School in Analysis and Applied Mathematics" (Rome, 2005). Since 2013 he is the head of the PhD Council for Mathematics of his department. He is author of 29 papers on international journals, of some papers in conference proceedings, of the monographs "Semiconcave functions, Hamilton-Jacobi equations and optimal control" (with P. Cannarsa) and "Mean curvature flow and isoperimetric inequalities" (with M. Ritoré). His research deals with problems in partial differential equations and in optimal control theory.

a:26:{i:0;a:14:{s:9:"citazione";s:157:"Alabau-Boussouira, F., Ancona, F., Porretta, A., & Sinestrari, C. (a cura di). (2019). Trends in Control Theory and Partial Differential Equations. Springer.";s:4:"data";s:4:"2019";s:2:"id";s:20:"PUBBLICAZIONE_354226";s:6:"handle";s:11:"2108/216934";s:9:"metadata1";s:8:"Curatele";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:59:"Trends in Control Theory and Partial Differential Equations";s:9:"metadata6";s:59:"Alabau-Boussouira, F; Ancona, F; Porretta, A; Sinestrari, C";s:9:"metadata7";s:25:"10.1007/978-3-030-17949-6";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:1;a:14:{s:9:"citazione";s:167:"Albano, P., Cannarsa, P., & Sinestrari, C. (2019). Generation of singularities from the initial datum for Hamilton-Jacobi equations. JOURNAL OF DIFFERENTIAL EQUATIONS.";s:4:"data";s:4:"2019";s:2:"id";s:20:"PUBBLICAZIONE_360055";s:6:"handle";s:11:"2108/221957";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";s:90:"Generalized characteristics, Hamilton-Jacobi equations, Singularities, Viscosity solutions";s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";s:430:"We study the generation of singularities from the initial datum for a solution of the Cauchy problem for a class of Hamilton-Jacobi equations of evolution. For such equations, we give conditions for the existence of singular generalized characteristics starting at the initial time from a given point of the domain, depending on the properties of the proximal subdifferential of the initial datum in a neighbourhood of that point.";s:9:"metadata5";s:80:"Generation of singularities from the initial datum for Hamilton-Jacobi equations";s:9:"metadata6";s:37:"Albano, P; Cannarsa, P; Sinestrari, C";s:9:"metadata7";s:25:"10.1016/j.jde.2019.08.051";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:2;a:14:{s:9:"citazione";s:146:"Risa, S., & Sinestrari, C. (2019). Ancient Solutions of Geometric Flows with Curvature Pinching. THE JOURNAL OF GEOMETRIC ANALYSIS, 29, 1206-1232.";s:4:"data";s:4:"2019";s:2:"id";s:20:"PUBBLICAZIONE_331565";s:6:"handle";s:11:"2108/198702";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";s:77:"Ancient solutions; Gauss curvature flow; Geometric flows; Mean curvature flow";s:9:"metadata3";s:26:"Settore MAT/03 - Geometria";s:9:"metadata4";N;s:9:"metadata5";s:60:"Ancient Solutions of Geometric Flows with Curvature Pinching";s:9:"metadata6";s:22:"Risa, S; Sinestrari, C";s:9:"metadata7";s:25:"10.1007/s12220-018-0036-0";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:3;a:14:{s:9:"citazione";s:156:"Risa, S., & Sinestrari, C. (2019). Strong spherical rigidity of ancient solutions of expansive curvature flows. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY.";s:4:"data";s:4:"2019";s:2:"id";s:20:"PUBBLICAZIONE_363005";s:6:"handle";s:11:"2108/224139";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:26:"Settore MAT/03 - Geometria";s:9:"metadata4";N;s:9:"metadata5";s:75:"Strong spherical rigidity of ancient solutions of expansive curvature flows";s:9:"metadata6";s:22:"Risa, S; Sinestrari, C";s:9:"metadata7";s:18:"10.1112/blms.12308";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:4;a:14:{s:9:"citazione";s:174:"Bertini, M.c., & Sinestrari, C. (2018). Volume preserving flow by powers of symmetric polynomials in the principal curvatures. MATHEMATISCHE ZEITSCHRIFT, 289(3-4), 1219-1236.";s:4:"data";s:4:"2018";s:2:"id";s:20:"PUBBLICAZIONE_330702";s:6:"handle";s:11:"2108/197924";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:26:"Settore MAT/03 - Geometria";s:9:"metadata4";N;s:9:"metadata5";s:85:"Volume preserving flow by powers of symmetric polynomials in the principal curvatures";s:9:"metadata6";s:26:"Bertini, Mc; Sinestrari, C";s:9:"metadata7";s:25:"10.1007/s00209-017-1995-8";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:5;a:14:{s:9:"citazione";s:176:"Bertini, M.c., & Sinestrari, C. (2018). Volume-preserving nonhomogeneous mean curvature flow of convex hypersurfaces. ANNALI DI MATEMATICA PURA ED APPLICATA, 197(4), 1295-1309.";s:4:"data";s:4:"2018";s:2:"id";s:20:"PUBBLICAZIONE_330700";s:6:"handle";s:11:"2108/197922";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";s:58:"Asymptotic behaviour; Geometric flows; Isoperimetric ratio";s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:76:"Volume-preserving nonhomogeneous mean curvature flow of convex hypersurfaces";s:9:"metadata6";s:26:"Bertini, Mc; Sinestrari, C";s:9:"metadata7";s:25:"10.1007/s10231-018-0725-0";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:6;a:14:{s:9:"citazione";s:179:"Cinti, E., Sinestrari, C., & Valdinoci, E. (2018). Neckpinch singularities in fractional mean curvature flows. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 146(6), 2637-2646.";s:4:"data";s:4:"2018";s:2:"id";s:20:"PUBBLICAZIONE_330388";s:6:"handle";s:11:"2108/197611";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:58:"Neckpinch singularities in fractional mean curvature flows";s:9:"metadata6";s:37:"Cinti, E; Sinestrari, C; Valdinoci, E";s:9:"metadata7";s:18:"10.1090/proc/14002";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:7;a:14:{s:9:"citazione";s:167:"Pipoli, G., & Sinestrari, C. (2017). Cylindrical estimates for mean curvature flow of hypersurfaces in CROSSes. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 51(2), 179-188.";s:4:"data";s:7:"2017-03";s:2:"id";s:20:"PUBBLICAZIONE_294168";s:6:"handle";s:11:"2108/165798";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";s:86:"Mean curvature flow, Singularity formation, Complex and quaternionic projective spaces";s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:73:"Cylindrical estimates for mean curvature flow of hypersurfaces in CROSSes";s:9:"metadata6";s:24:"Pipoli, G; Sinestrari, C";s:9:"metadata7";s:25:"10.1007/s10455-016-9530-4";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:8;a:14:{s:9:"citazione";s:145:"Pipoli, G., & Sinestrari, C. (2017). Mean curvature flow of pinched submanifolds of CPn. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 25(4), 799-846.";s:4:"data";s:4:"2017";s:2:"id";s:20:"PUBBLICAZIONE_323469";s:6:"handle";s:11:"2108/191734";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:26:"Settore MAT/03 - Geometria";s:9:"metadata4";N;s:9:"metadata5";s:50:"Mean curvature flow of pinched submanifolds of CPn";s:9:"metadata6";s:24:"Pipoli, G; Sinestrari, C";s:9:"metadata7";s:26:"10.4310/CAG.2017.v25.n4.a3";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:9;a:14:{s:9:"citazione";s:142:"Sinestrari, C. (2016). Singularities of three-dimensional Ricci flows. In Ricci flow and geometric applications (pp. 71-104). Springer Verlag.";s:4:"data";s:4:"2016";s:2:"id";s:20:"PUBBLICAZIONE_310204";s:6:"handle";s:11:"2108/179605";s:9:"metadata1";s:19:"Contributo in libro";s:9:"metadata2";N;s:9:"metadata3";s:26:"Settore MAT/03 - Geometria";s:9:"metadata4";N;s:9:"metadata5";s:46:"Singularities of three-dimensional Ricci flows";s:9:"metadata6";s:13:"Sinestrari, C";s:9:"metadata7";s:27:"10.1007/978-3-319-42351-7_3";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:10;a:14:{s:9:"citazione";s:128:"Alessandroni, R., & Sinestrari, C. (2015). Evolution of convex entire graphs by curvature flows. GEOMETRIC FLOWS, 1(1), 111-125.";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_242215";s:6:"handle";s:11:"2108/123110";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:52:"Evolution of convex entire graphs by curvature flows";s:9:"metadata6";s:30:"Alessandroni, R; Sinestrari, C";s:9:"metadata7";s:23:"10.1515/geofl-2015-0006";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:11;a:14:{s:9:"citazione";s:189:"Cannarsa, P., Mazzola, M., & Sinestrari, C. (2015). Global Propagation of Singularities for Time Dependent Hamilton-Jacobi Equations. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 38, 441-469.";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_232190";s:6:"handle";s:11:"2108/113950";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:80:"Global Propagation of Singularities for Time Dependent Hamilton-Jacobi Equations";s:9:"metadata6";s:38:"Cannarsa, P; Mazzola, M; Sinestrari, C";s:9:"metadata7";s:25:"10.3934/dcds.2015.35.4225";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:12;a:14:{s:9:"citazione";s:141:"Huisken, G., & Sinestrari, C. (2015). Convex ancient solutions of the mean curvature flow. JOURNAL OF DIFFERENTIAL GEOMETRY, 101(2), 267-287.";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_232194";s:6:"handle";s:11:"2108/113954";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:51:"Convex ancient solutions of the mean curvature flow";s:9:"metadata6";s:25:"Huisken, G; Sinestrari, C";s:9:"metadata7";s:22:"10.4310/jdg/1442364652";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:13;a:14:{s:9:"citazione";s:167:"Sinestrari, C. (2015). Convex hypersurfaces evolving by volume preserving curvature flows. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 54(2), 1985-1993.";s:4:"data";s:4:"2015";s:2:"id";s:20:"PUBBLICAZIONE_240068";s:6:"handle";s:11:"2108/121200";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:66:"Convex hypersurfaces evolving by volume preserving curvature flows";s:9:"metadata6";s:13:"Sinestrari, C";s:9:"metadata7";s:25:"10.1007/s00526-015-0852-z";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:14;a:14:{s:9:"citazione";s:174:"Albano, P., Cannarsa, P., Nguyen, K., & Sinestrari, C. (2013). Singular gradient flow of the distance function and homotopy equivalence. MATHEMATISCHE ANNALEN, 356(1), 23-43.";s:4:"data";s:4:"2013";s:2:"id";s:20:"PUBBLICAZIONE_183625";s:6:"handle";s:10:"2108/89937";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:72:"Singular gradient flow of the distance function and homotopy equivalence";s:9:"metadata6";s:48:"Albano, P; Cannarsa, P; Nguyen, K; Sinestrari, C";s:9:"metadata7";s:25:"10.1007/s00208-012-0835-8";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:15;a:14:{s:9:"citazione";s:152:"Brendle, S., Huisken G, & Sinestrari C (2011). Ancient solutions to the Ricci Flow with pinched curvature. DUKE MATHEMATICAL JOURNAL, 158(3), 537-551.";s:4:"data";s:4:"2011";s:2:"id";s:20:"PUBBLICAZIONE_217047";s:6:"handle";s:11:"2108/102822";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:58:"Ancient solutions to the Ricci Flow with pinched curvature";s:9:"metadata6";s:35:"Brendle, S; Huisken G; Sinestrari C";s:9:"metadata7";s:24:"10.1215/00127094-1345672";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:16;a:14:{s:9:"citazione";s:138:"Alessandroni, R., & Sinestrari, C. (2010). Convexity estimates for a nonhomogeneous curvature flow. MATHEMATISCHE ZEITSCHRIFT, 266, 65-82.";s:4:"data";s:4:"2010";s:2:"id";s:19:"PUBBLICAZIONE_50552";s:6:"handle";s:10:"2108/13489";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:55:"Convexity estimates for a nonhomogeneous curvature flow";s:9:"metadata6";s:30:"Alessandroni, R; Sinestrari, C";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:17;a:14:{s:9:"citazione";s:182:"Alessandroni, R., & Sinestrari, C. (2010). Evolution of hypersurfaces by powers of the scalar curvature. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 9, 541-571.";s:4:"data";s:4:"2010";s:2:"id";s:19:"PUBBLICAZIONE_50550";s:6:"handle";s:10:"2108/13492";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:60:"Evolution of hypersurfaces by powers of the scalar curvature";s:9:"metadata6";s:30:"Alessandroni, R; Sinestrari, C";s:9:"metadata7";s:27:"10.2422/2036-2145.2010.3.05";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:18;a:14:{s:9:"citazione";s:176:"Cabezas-Rivas, E., & Sinestrari, C. (2010). Volume-preserving flow by powers of the m-th mean curvature. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 38, 441-469.";s:4:"data";s:4:"2010";s:2:"id";s:19:"PUBBLICAZIONE_50551";s:6:"handle";s:10:"2108/13491";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:59:"Volume-preserving flow by powers of the m-th mean curvature";s:9:"metadata6";s:31:"Cabezas-Rivas, E; Sinestrari, C";s:9:"metadata7";s:25:"10.1007/s00526-009-0294-6";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:19;a:14:{s:9:"citazione";s:118:"Ritoré, M., & Sinestrari, C. (2010). Mean curvature flow and isoperimetric inequaltities. BASEL -- CHE : Birkhäuser.";s:4:"data";s:4:"2010";s:2:"id";s:19:"PUBBLICAZIONE_50553";s:6:"handle";s:10:"2108/13490";s:9:"metadata1";s:10:"Monografia";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:51:"Mean curvature flow and isoperimetric inequaltities";s:9:"metadata6";s:25:"Ritoré, M; Sinestrari, C";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:20;a:14:{s:9:"citazione";s:192:"CANNARSA, P., CARDALIAGUET, P., & SINESTRARI, C. (2009). On a differential model for growing sandpiles with non-regular sources. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 343, 656-675.";s:4:"data";s:4:"2009";s:2:"id";s:19:"PUBBLICAZIONE_52998";s:6:"handle";s:10:"2108/55258";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:70:"On a differential model for growing sandpiles with non-regular sources";s:9:"metadata6";s:43:"CANNARSA, P; CARDALIAGUET, P; SINESTRARI, C";s:9:"metadata7";s:25:"10.1080/03605300902909966";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:21;a:14:{s:9:"citazione";s:144:"Huisken, G., & Sinestrari, C. (2009). Mean curvature flow with surgeries of two-convex hypersurfaces. INVENTIONES MATHEMATICAE, 175(1), 137-221.";s:4:"data";s:4:"2009";s:2:"id";s:18:"PUBBLICAZIONE_5188";s:6:"handle";s:10:"2108/25730";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:62:"Mean curvature flow with surgeries of two-convex hypersurfaces";s:9:"metadata6";s:25:"Huisken, G; Sinestrari, C";s:9:"metadata7";s:25:"10.1007/s00222-008-0148-4";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:22;a:14:{s:9:"citazione";s:133:"Sinestrari, C. (2008). Singularities of mean curvature flow and flow with surgeries. In Geometric Flows. International Press, Boston.";s:4:"data";s:4:"2008";s:2:"id";s:20:"PUBBLICAZIONE_217116";s:6:"handle";s:11:"2108/102824";s:9:"metadata1";s:19:"Contributo in libro";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:60:"Singularities of mean curvature flow and flow with surgeries";s:9:"metadata6";s:13:"Sinestrari, C";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:23;a:14:{s:9:"citazione";s:131:"Cannarsa, P., & Sinestrari, C. (2004). Semiconcave functions, Hamilton-Jacobi equations, and optimal control. BOSTON : Birkhäuser.";s:4:"data";s:4:"2004";s:2:"id";s:20:"PUBBLICAZIONE_106328";s:6:"handle";s:10:"2108/55418";s:9:"metadata1";s:10:"Monografia";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:69:"Semiconcave functions, Hamilton-Jacobi equations, and optimal control";s:9:"metadata6";s:26:"Cannarsa, P; Sinestrari, C";s:9:"metadata7";N;s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:24;a:14:{s:9:"citazione";s:128:"Sinestrari, C. (2004). Regularity along optimal trajectories of the value function of a Mayer problem. ESAIM. COCV(10), 666-676.";s:4:"data";s:4:"2004";s:2:"id";s:19:"PUBBLICAZIONE_17057";s:6:"handle";s:10:"2108/33069";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:78:"Regularity along optimal trajectories of the value function of a Mayer problem";s:9:"metadata6";s:13:"Sinestrari, C";s:9:"metadata7";s:20:"10.1051/cocv:2004026";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}i:25;a:14:{s:9:"citazione";s:164:"Sinestrari, C. (2004). Semiconcavity of the value function for exit time problems with nonsmooth target. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 3(4), 757-774.";s:4:"data";s:4:"2004";s:2:"id";s:19:"PUBBLICAZIONE_19285";s:6:"handle";s:10:"2108/33077";s:9:"metadata1";s:19:"Articolo su rivista";s:9:"metadata2";N;s:9:"metadata3";s:35:"Settore MAT/05 - Analisi Matematica";s:9:"metadata4";N;s:9:"metadata5";s:80:"Semiconcavity of the value function for exit time problems with nonsmooth target";s:9:"metadata6";s:13:"Sinestrari, C";s:9:"metadata7";s:23:"10.3934/cpaa.2004.3.757";s:9:"metadata8";N;s:9:"metadata9";N;s:10:"metadata10";N;}}" } ["meta_keywords"]=> array(1) { [0]=> string(1) "," } ["reserved"]=> array(1) { [0]=> string(1) "0" } ["auth_ip"]=> array(1) { [0]=> string(1) "0" } } ["_fieldBoosts":protected]=> array(6) { ["content_id"]=> bool(false) ["content_title"]=> bool(false) ["description"]=> bool(false) ["meta_keywords"]=> bool(false) ["reserved"]=> bool(false) ["auth_ip"]=> bool(false) } } }