Carlo Sinestrari

Fonte dei dati: Archivio della Ricerca
  1. Albano, P., Cannarsa, P., & Sinestrari, C. (2020). Generation of singularities from the initial datum for Hamilton-Jacobi equations. JOURNAL OF DIFFERENTIAL EQUATIONS, 268(4), 1412-1426. Dettagli
  2. Alabau-Boussouira, F., Ancona, F., Porretta, A., & Sinestrari, C. (a cura di). (2019). Trends in Control Theory and Partial Differential Equations. Springer. Dettagli
  3. Risa, S., & Sinestrari, C. (2019). Ancient Solutions of Geometric Flows with Curvature Pinching. THE JOURNAL OF GEOMETRIC ANALYSIS, 29, 1206-1232. Dettagli
  4. Risa, S., & Sinestrari, C. (2019). Strong spherical rigidity of ancient solutions of expansive curvature flows. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. Dettagli
  5. Bertini, M.C., & Sinestrari, C. (2018). Volume preserving flow by powers of symmetric polynomials in the principal curvatures. MATHEMATISCHE ZEITSCHRIFT, 289(3-4), 1219-1236. Dettagli
  6. Bertini, M.C., & Sinestrari, C. (2018). Volume-preserving nonhomogeneous mean curvature flow of convex hypersurfaces. ANNALI DI MATEMATICA PURA ED APPLICATA, 197(4), 1295-1309. Dettagli
  7. Cinti, E., Sinestrari, C., & Valdinoci, E. (2018). Neckpinch singularities in fractional mean curvature flows. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 146(6), 2637-2646. Dettagli
  8. Pipoli, G., & SINESTRARI, C. (2017). Cylindrical estimates for mean curvature flow of hypersurfaces in CROSSes. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 51(2), 179-188. Dettagli
  9. Pipoli, G., & Sinestrari, C. (2017). Mean curvature flow of pinched submanifolds of CPn. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 25(4), 799-846. Dettagli
  10. Sinestrari, C. (2016). Singularities of three-dimensional Ricci flows. In Ricci flow and geometric applications (pp. 71-104). Springer Verlag. Dettagli
  11. Alessandroni, R., & SINESTRARI, C. (2015). Evolution of convex entire graphs by curvature flows. GEOMETRIC FLOWS, 1(1), 111-125. Dettagli
  12. CANNARSA, P., Mazzola, M., & SINESTRARI, C. (2015). Global Propagation of Singularities for Time Dependent Hamilton-Jacobi Equations. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 38, 441-469. Dettagli


    CANNARSA, P., Mazzola, M., & SINESTRARI, C. (2015). Global Propagation of Singularities for Time Dependent Hamilton-Jacobi Equations. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 38, 441-469.
    Articolo su rivista
    Settore MAT/05 - Analisi Matematica
    We investigate the properties of the set of singularities of semiconcave solutions of Hamilton-Jacobi equations. It is well known that the singularities of such solutions propagate locally along generalized characteristics. Special generalized characteristics, satisfying an energy condition, can be constructed, under some assumptions on the structure of the Hamiltonian H. In this paper, we provide estimates of the dissipative behavior of the energy along such curves. As an application, we prove that the singularities of any viscosity solution of such equations cannot vanish in a finite time.
    Tutti gli Autori
    Global Propagation of Singularities for Time Dependent Hamilton-Jacobi Equations
  13. Huisken, G., & SINESTRARI, C. (2015). Convex ancient solutions of the mean curvature flow. JOURNAL OF DIFFERENTIAL GEOMETRY, 101(2), 267-287. Dettagli
  14. SINESTRARI, C. (2015). Convex hypersurfaces evolving by volume preserving curvature flows. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 54(2), 1985-1993. Dettagli
  15. Albano, P., Cannarsa, P., Nguyen, K., & Sinestrari, C. (2013). Singular gradient flow of the distance function and homotopy equivalence. MATHEMATISCHE ANNALEN, 356(1), 23-43. Dettagli
  16. Brendle, S., Huisken G, & Sinestrari C (2011). Ancient solutions to the Ricci Flow with pinched curvature. DUKE MATHEMATICAL JOURNAL, 158(3), 537-551. Dettagli
  17. Alessandroni, R., & Sinestrari, C. (2010). Convexity estimates for a nonhomogeneous curvature flow. MATHEMATISCHE ZEITSCHRIFT, 266, 65-82. Dettagli
  18. Alessandroni, R., & Sinestrari, C. (2010). Evolution of hypersurfaces by powers of the scalar curvature. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 9, 541-571. Dettagli
  19. Cabezas-Rivas, E., & Sinestrari, C. (2010). Volume-preserving flow by powers of the m-th mean curvature. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 38, 441-469. Dettagli
  20. Ritoré, M., & Sinestrari, C. (2010). Mean curvature flow and isoperimetric inequaltities. BASEL -- CHE : Birkhäuser. Dettagli
  21. CANNARSA, P., CARDALIAGUET, P., & SINESTRARI, C. (2009). On a differential model for growing sandpiles with non-regular sources. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 343, 656-675. Dettagli
  22. Huisken, G., & Sinestrari, C. (2009). Mean curvature flow with surgeries of two-convex hypersurfaces. INVENTIONES MATHEMATICAE, 175(1), 137-221. Dettagli
  23. Sinestrari, C. (2008). Singularities of mean curvature flow and flow with surgeries. In Geometric Flows. International Press, Boston. Dettagli
  24. Cannarsa, P., & Sinestrari, C. (2004). Semiconcave functions, Hamilton-Jacobi equations, and optimal control. BOSTON : Birkhäuser. Dettagli
  25. Sinestrari, C. (2004). Regularity along optimal trajectories of the value function of a Mayer problem. ESAIM. COCV(10), 666-676. Dettagli
  26. Sinestrari, C. (2004). Semiconcavity of the value function for exit time problems with nonsmooth target. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 3(4), 757-774. Dettagli